Advertisement

Communications in Mathematical Physics

, Volume 102, Issue 2, pp 217–235 | Cite as

Large-time behavior of the Broadwell model of a discrete velocity gas

  • J. Thomas Beale
Article

Abstract

We study the behavior of solutions of the one-dimensional Broadwell model of a discrete velocity gas. The particles have velocity ±1 or 0; the total mass is assumed finite. We show that at large time the interaction is negligible and the solution tends to a free state in which all the mass travels outward at speed 1. The limiting behavior is stable with respect to the initial state. No smallness assumptions are made.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Total Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broadwell, J. E.: Shock structure in a simple discrete velocity gas. Phys. Fluids7, 1243–47 (1964)Google Scholar
  2. 2.
    Cabannes, H.: Solution globale du problème de Cauchy en théorie cinétique discrète. J. Mec.17, 1–22Google Scholar
  3. 3.
    Caflisch, R., Papanicolaou, G.: The fluid-dynamical limit of a nonlinear model Boltzmann equation. Commun. Pure Appl. Math.32, 589–619 (1979)Google Scholar
  4. 4.
    Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. II, New York: Interscience 1962Google Scholar
  5. 5.
    Godunov, S. K., Sultangazin, U. M.: On discrete models of the kinetic Boltzmann equation. Russ. Math. Surv.26, No. 3, 1–56 (1971)Google Scholar
  6. 6.
    Illner, R., Reed, M. C.: The decay of solutions of the Carleman model. Math. Methods Appl. Sci.3, 121–127 (1981)Google Scholar
  7. 7.
    Illner, R.: Global existence results for discrete velocity models of the Boltzmann equation in several dimensions. (Preprint)Google Scholar
  8. 8.
    Illner, R.: The Broadwell model for initial values inL +1(ℝ). Commun. Math. Phys.93, 341–353 (1984)Google Scholar
  9. 9.
    Inoue, K., Nishida, T.: On the Broadwell model of the Boltzmann equation for a simple discrete velocity gas. Appl. Math. Optim.3, 27–49 (1976)Google Scholar
  10. 10.
    Kaniel, S., Shinbrot, M.: The Boltzmann equation, II: Some discrete velocity models. (to appear in J. Mec.)Google Scholar
  11. 11.
    Kawashima, S.: Global solution of the initial value problem for a discrete velocity model. Proc. Jpn. Acad.57, 19–24 (1981)Google Scholar
  12. 12.
    Leguillon: Solution globale d'un problème avec conditions aux limites en theorie cinetique discrète. C.R. Acad. Sci. ParisA-B 285, 1125–28 (1977)Google Scholar
  13. 13.
    Nishida, T., Mimura, M.: On the Broadwell's model for a simple discrete velocity gas. Proc. Jpn. Acad.50, 812–17 (1974)Google Scholar
  14. 14.
    Tartar, L.: Existence globale pom un system hyperbolique semilinéarie de la théorie cinetique des gaz. Sémin. Goulaouic-Schwarz, No. 1 (1975/76)Google Scholar
  15. 15.
    Tartar, L.: Some existence theorems for semilinear hyperbolic systems in one space variable, MRC Technical Summary Report, University of Wisconsin (1980)Google Scholar
  16. 16.
    Hale, J. K.: Ordinary differential equations. New York: Wiley-Interscience 1969Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. Thomas Beale
    • 1
  1. 1.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations