Constructive Approximation

, Volume 9, Issue 1, pp 111–119 | Cite as

Extremal measures for a system of orthogonal polynomials

  • Theodore S. Chihara
  • Mourad E. H. Ismail
Article

Abstract

We characterize the extremal measures of an indeterminate moment problem associated with a system of orthogonal polynomials defined by a three-term recurrence relation.

AMS classification

Primary 33D45 Secondary 30E05 

Key words and phrases

Orthogonal polynomials Al-Salam-Chihara polynomials Indeterminate moment problems Extremal measures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. A. Al-Salam, T. S. Chihara (1976).:Convolutions of orthogonal polynomials. SIAM J. Math. Anal.,7: 16–28.Google Scholar
  2. 2.
    R. A. Askey, M. E. H. Ismail (1984):Recurrence relations, continued fractions and orthogonal polynomials. Mem. Amer. Math. Soc.,49: no. 300.Google Scholar
  3. 3.
    R. A. Askey, J. A. Wilson (1985):Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc.,54: no. 319.Google Scholar
  4. 4.
    G. Gasper, M. Rahman (1990): Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications vol. 35. Cambridge: Cambridge University Press.Google Scholar
  5. 5.
    M. E. H. Ismail, D. R. Masson (to appear)Q-Hermite polynomials, biorthogonal rational functions and q-beta integrals.Google Scholar
  6. 6.
    D. Moak (1981):The q-analogue of the Laguerre polynomials. J. Math. Anal. Appl..,81: 20–47.Google Scholar
  7. 7.
    F. W. J. Olver (1974).: Asymptotics and Special Functions. New York: Academic Press.Google Scholar
  8. 8.
    J. Shohat, J. D. Tamarkin (1963): The Problem of Moments. Mathematical Surveys, No. 1. Providence, RI: American Mathematical Society.Google Scholar
  9. 9.
    G. Szegö (1975): Orthogonal Polynomials, 4th edn. Colloquium Publications vol. XXIII. Providence, RI: American Mathematical Society.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • Theodore S. Chihara
    • 1
  • Mourad E. H. Ismail
    • 2
  1. 1.Department of Mathematics, Computer Science, and StatisticsPurdue University CalumetHammondUSA
  2. 2.Department of MathematicsUniversity of South FloridaTampaUSA

Personalised recommendations