Advertisement

Journal of Geometry

, Volume 57, Issue 1–2, pp 70–80 | Cite as

On a class of designs obtained by composition of ovaloids

  • Alberto Del Fra
  • Grazia Migliori
Article
  • 10 Downloads

Abstract

Recently Tallini introduced the definition ofcomposition of two designs with suitable parameters. In this paper we study the Steiner systems obtained by composition of two given ovaloids, investigating the existence of possible Steiner subsystems of them. Furthermore we give an evaluation of the number of these Steiner systems, which are not isomorphic.

Keywords

Suitable Parameter Steiner System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    CONWAY, J., CURTIS, R., NORTON, S., PARKER, R. and WILSON, R.:Atlas of Finite Groups, Clarendon Press, Oxford, 1985.Google Scholar
  2. [2]
    BICHARA, A.:Sui k-insiemi di PG(r, q)di classe [0,1,2,n]2, Rend. Mat. Appl., (6) 13 (1980), 359–370.Google Scholar
  3. [3]
    BICHARA, A. and KORCHMAROS, G.: n2-setsin a projective plane which determine exactly n2 +n lines, J. Geom., 15 (1980), 175–181.Google Scholar
  4. [4]
    HIRSCHFELD,J.:Finite projective spaces of three dimensions, Oxford U. P., 1985.Google Scholar
  5. [5]
    HUGHES,D. and PIPER,F.:Design theory, Cambridge U. P., 1985.Google Scholar
  6. [6]
    TALLINI,G.:Composizioni di disegni, Sem. Mat. Univ. Bari, 254 (1993).Google Scholar
  7. [7]
    TALLINI,G.:Teoria dei k-insiemi in uno spazio di Galois. Teoria dei codici correttori, Sem. Geom. Comb. Dip. Mat. Univ. Roma “La Sapienza”, 64 (1985).Google Scholar
  8. [8]
    TALLINI, G.:On sets of given type in a Steiner system, Lecture Notes in Pure and Appl. Math., 103 (1985), 307–319.Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • Alberto Del Fra
    • 1
  • Grazia Migliori
    • 2
  1. 1.Facoltà di IngegneriaUniversità de L' AquilaL'AquilaItaly
  2. 2.Dipartimento di Matematica “G. Castelnuovo”Università di Roma “La Sapienza”RomaItaly

Personalised recommendations