Celestial mechanics

, Volume 23, Issue 1, pp 33–56 | Cite as

Transformation from proper time on Earth to coordinate time in solar system barycentric space-time frame of reference

Part 1
  • Theodore D. Moyer
Article

Abstract

In order to obtain accurate computed values of Earth-based range and Doppler observables of a beep space probe, an expression is required for the time differencet−τ, wheret is coordinate time in the solar system barycentric space-time frame of reference and τ is proper time recorded on a fixed atomic clock on earth. This paper is part 1 of a two-part article which obtains an expression fort−τ which is suitable for use in obtaining computed values of observations of a spacecraft or celestial body located anywhere in the solar system. The expression can also be used in the computation of Very Long Baseline Interferometry data types. Part 1 obtains an expression fort−τ which is a function of position and velocity vectors of the major celestial bodies of the solar system and the atomic clock on Earth which reads τ. In Part 2, this expression will be transformed to a function of time and the Earth-fixed coordinates of the atomic clock.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, S.: 1964, ‘Note on Variability of the Time Standard due to the Relativistic Effect’,Astron. J. 69, 221–223.Google Scholar
  2. Clemence, G. M. and Szebehely, V.: 1967, ‘Annual Variation of an Atomic Clock’,Astron. J. 72, 1324–1326.Google Scholar
  3. de Sitter, W.: 1916, ‘On Einstein's Theory of Gravitation and its Astronomical Consequences’,Monthly Notices Roy. Astron. Soc. 76, 699–728 and77, 155–184.Google Scholar
  4. Eddington, A. and Clark, G. L.: 1938, ‘The Problem ofn Bodies in General Relativity Theory’,Proc. Roy. Soc. London, Ser. A. 166, 465–475.Google Scholar
  5. H.M. Stationery Office: 1961,Explanatory Supplement to the Ephemeris, London.Google Scholar
  6. Infeld, L. and Plebański, J.: 1960,Motion and Relativity, Pergamon Press, Oxford, New York.Google Scholar
  7. Mechtly, E. A.: 1969,The International System of Units, Physical Constants and Conversion Factors, Revised, NASA SP-7012, p. 4.Google Scholar
  8. Misner, C. W., Thorne, K. S. and Wheeler, J. A.: 1973,Gravitation, W. H. Freeman and Co., San Francisco.Google Scholar
  9. Moyer, T. D.: 1965, ‘Relativistic equations of motion’, M.S. Thesis, University of California, Los Angeles, p. 66.Google Scholar
  10. Moyer, T. D.: 1971,Mathematical Formulation of the Double Precision Orbit Determination Program (DPODP), Jet Propulsion Laboratory, Technical Report 32-1527.Google Scholar
  11. Newcomb, S.: 1898, ‘Tables of the four inner planets’,Astron. Papers Am. Ephem. 6, 13–16.Google Scholar
  12. Robertson, D. S.: 1975,Geodetic and Astrometric Measurements with Very-Long-Baseline Interferometry, Goddard Space Flight Center, X-922-77-228.Google Scholar
  13. Seidelmann, P. K., Doggett, L. E. and De Luccia, M. R.: 1974, ‘Mean Elements of the Principal Planets’,Astron. J. 79, 57–60.Google Scholar
  14. Standish, E. M. Jr., Keesey, M. S. W., and Newhall, X X.: 1976,JPL Development Ephemeris Number 96, Jet Propulsion Laboratory, TR 32-1603, p. 30.Google Scholar
  15. Thomas, J. B.: 1975, ‘Reformulation of the Relativistic Conversion between Coordinate Time and Atomic Time’,Astron. J. 80, 405–411.Google Scholar
  16. Winkler, G. M. R. and Van Flandern T. C.: 1977, ‘Ephemeris Time, Relativity, and the Problem of Uniform Time in Astronomy’,Astron. J. 82, 84–92.Google Scholar

Copyright information

© D. Reidel Publishing Co 1981

Authors and Affiliations

  • Theodore D. Moyer
    • 1
  1. 1.Jet Propulsion LaboratoryPasadenaU.S.A.

Personalised recommendations