Communications in Mathematical Physics

, Volume 117, Issue 1, pp 159–176 | Cite as

Moduli of super Riemann surfaces

  • Claude LeBrun
  • Mitchell Rothstein


The basic properties of super Riemann surfaces are presented, and their supermoduli spaces are constructed, in a manner suitable for the application of algebro-geometric techniques to string theory.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Basic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Ahlfors, L.: The complex analytic structure of the space of closed Riemann surfaces. In Analytic functions, pp. 349–376. Princeton, NJ: Princeton University Press 1960Google Scholar
  2. [At]
    Atiyah, M.: Riemann surfaces and spin structures. Ann. Sci. Ec. Norm. Super., Ser. 4, t.4, 47–62 (1971)Google Scholar
  3. [B-E]
    Bers, L., Ehrenpreis, L.: Holomorphic convexity of Teichmüller spaces. Bull. AMS70, 761–764 (1964)Google Scholar
  4. [C-R]
    Crane, L., Rabin, J.M.: Super Riemann surfaces: uniformization and Teichmüller theory. Commun. Math. Phys.113, 601–623 (1988)Google Scholar
  5. [E-K]
    Earle, C.J., Kra, I.: Half-canonical divisors on variable Riemann surfaces. J. Math. Kyoto Univ.26, 39–64 (1986)Google Scholar
  6. [E-L]
    Eastwood, M., Le Brun, C.: Thickenings and supersymmetric extensions of complex manifolds. Am. J. Math.108, 1177–1192 (1986)Google Scholar
  7. [F-K]
    Farkas, H., Kra, I.: Riemann surfaces. Graduate texts in mathematics, Vol. 71. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  8. [Fr]
    Freidan, D.: Notes on string theory and two dimensional conformal field theory. EFI preprint 85–99Google Scholar
  9. [G]
    Grothendieck, A.: Construction de l'espace de Teichmüller. Sem. Henri Cartan13 (1961) exposé 17Google Scholar
  10. [J]
    Johnson, D.: Spin structures and quadratic forms on surfaces. J. Lond. Math. Soc. (2),22, 365–373 (1980)Google Scholar
  11. [K-S]
    Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures. I, II. Ann. Math.67, 328–466 (1958); II. Ann. Math.71, 43–76 (1960)Google Scholar
  12. [M]
    Manin, Yu.I.: Critical dimensions of the string theories and the dualizing sheaf on the moduli space of (super) curves. Funct. Anal. Appl.20, 244–245 (1987)Google Scholar
  13. [R]
    Rothstein, M.: Deformations of complex supermanifolds. Proc. AMS95, 255–260 (1985)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Claude LeBrun
    • 1
  • Mitchell Rothstein
    • 2
  1. 1.Department of MathematicsState University of New YorkStony BrookUSA
  2. 2.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations