Advertisement

Celestial mechanics

, Volume 10, Issue 2, pp 185–205 | Cite as

A regularization of the three-body problem

  • S. J. Aarseth
  • K. Zare
Article

Abstract

Letr1,r2,r3 be arbitrary coordinates of the non-zero interacting mass-pointsm1,m2,m3 and define the distancesR1=|r1r3|,R2=|r2r3|,R=|r1r2|. An eight-dimensional regularization of the general three-body problem is given which is based on Kustaanheimo-Stiefel regularization of a single binary and possesses the properties:
  1. (i)

    The equations of motion are regular for the two-body collisionsR1→0 orR2→0.

     
  2. (ii)

    Provided thatRR1 orRR2, the equations of motion are numerically well behaved for close triple encounters.

     

Although the requirementR≳ min (R1,R2) may involve occasional transformations to physical variables in order to re-label the particles, all integrations are performed in regularized variables. Numerical comparisons with the standard Kustaanheimo-Stiefel regularization show that the new method gives improved accuracy per integration step at no extra computing time for a variety of examples. In addition, time reversal tests indicate that critical triple encounters may now be studied with confidence.

The Hamiltonian formulation has been generalized to include the case of perturbed three-body motions and it is anticipated that this procedure will lead to further improvements ofN-body calculations.

Keywords

Computing Time Physical Variable Integration Step Hamiltonian Formulation Numerical Comparison 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarseth, S. J.: 1971,Astrophys. Space Sci. 14, 118.Google Scholar
  2. Baumgarte, J. and Stiefel, E.: 1974, in D. G. Bettis (ed.),Lecture Notes in Mathematics, Springer Verlag, Heidelberg, Vol. 362, p. 207.Google Scholar
  3. Bettis, D. G. and Szebehely, V.: 1971,Astrophys. Space Sci. 14, 133.Google Scholar
  4. Birkhoff, G. D.: 1915,Rend. Circ. Mat. Palermo 39, 1.Google Scholar
  5. Burrau, C.: 1906,Vierteljahrschrift Astron. Ges. 41, 261.Google Scholar
  6. Euler, L.: 1765,Nov. Comm. Petrop. 11, 144.Google Scholar
  7. Fehlberg, E.: 1968, ‘Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control’, NASA Technical Report 287.Google Scholar
  8. Heggie, D. C.: 1974, this issue, p. 217.Google Scholar
  9. Hopf, H.: 1931,Math. Ann. 104.Google Scholar
  10. Hurwitz, A.: 1933,Math. Werke, Vol. 2, Birkhäuser, Basel.Google Scholar
  11. Kustaanheimo, P. and Stiefel, E.: 1965,J. Reine Angew. Math. 218, 204.Google Scholar
  12. Lemaître, G.: 1955,Vistas in Astronomy 1, 207.Google Scholar
  13. Levi-Civita, T.: 1903,Ann. Math. 9, 1.Google Scholar
  14. Peters, C. F.: 1968,Bull. Astron. 3, 167.Google Scholar
  15. Poincaré, H.: 1907,Acta Math. 31, 1.Google Scholar
  16. Stiefel, E. and Waldvogel, J.: 1965,Compt. Rend. 260, 805.Google Scholar
  17. Sundman, K. F.: 1912,Acta. Math. 36, 105.Google Scholar
  18. Szebehely, V.: 1967,Theory of Orbits, Academic Press, New York.Google Scholar
  19. Szebehely, V. and Peters, C. F.: 1967,Astron. J. 72, 876.Google Scholar
  20. Thiele, T. N.: 1896,Astron. Nachr. 138, 1.Google Scholar
  21. Waldvogel, J.: 1972,Celes. Mech. 6, 221.Google Scholar
  22. Whittaker, E. T.: 1904,Analytical Dynamics, Cambridge University Press.Google Scholar
  23. Zare, K.: 1974, this issue, p. 207.Google Scholar

Copyright information

© D. Reidel Publishing Company 1974

Authors and Affiliations

  • S. J. Aarseth
    • 1
  • K. Zare
    • 1
  1. 1.The University of Texas at AustinAustinUSA

Personalised recommendations