Mineralogy and Petrology

, Volume 39, Issue 1, pp 55–76 | Cite as

Nomenclature of Pyroxenes

  • N. Morimoto


This is the final report on the nomenclature of pyroxenes by the Subcommittee on Pyroxenes established by the Commission on New Minerals and Mineral Names of the International Mineralogical Association. The recommendations of the Subcommittee as put forward in this report have been formally accepted by the Commission. Accepted and widely used names have been chemically defined, by combining new and conventional methods, to agree as far as possible with the consensus of present use. Twenty names are formally accepted, among which thirteen are used to represent the end-members of definite chemical compositions. In common binary solid-solution series, species names are given to the two end-members by the “50% rule”. Adjectival modifiers for pyroxene mineral names are defined to indicate unusual amounts of chemical constituents. This report includes a list of 105 previously used pyroxene names that have been formally discarded by the Commission.


Geochemistry Conventional Method Final Report Chemical Constituent Mineralogical Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Die Nomenklatur von Pyroxenen


Diese Arbeit über die Nomenklatur der Pyroxene ist der Endbericht eines Unterkomitees der Commission on New Minerals und Mineral Names der International Mineralogical Association. Die in dieser Arbeit vorgelegten Empfehlungen des Unterkomitees wurden von der Kommission angenommen. Akzeptierte und häufig verwendete Namen wurden unter Verwendung neuer und konventioneller Methoden und unter möglichst großer Übereinstimmung mit dem derzeitigen Gebrauch chemisch definiert. Zwanzig Namen wurden als bindend angenommen, von denen dreizehn Endglieder mit chemisch genau definierten Zusammensetzungen sind. Für gewöhnlich wurden die Namen von zwei Endgliedern einer binären Mischkristallreihe durch Anwendung der “50% Regel” ermittelt. Zur Darstellung ungewöhnlicher chemischer Zusammensetzungen wurden den Pyroxennamen ergänzende Eigenschaftswörter beigefügt. 105 ursprünglich verwendete Namen von Pyroxenen wurden bereits früher von der Kommission ausgesondert und sind in diesem Bericht aufgelistet.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey SW (1977) Report of the IMA-IUCr joint committee on nomenclature. Am Min 62: 411–415Google Scholar
  2. Bokij GB, Ginzburg JV (1985) The systematics of mineral species in pyroxene family. Trans IGG Academy of Sciences, Novosibirsk 610: 12–35Google Scholar
  3. Cameron M, Papike JJ (1981) Structural and chemical variations in pyroxenes. Am Min 66: 1–50Google Scholar
  4. Chester AH (1886) Catalogue of minerals. John Wiley and Sons, New YorkGoogle Scholar
  5. Cosca MA, Peacor DR (1987) Chemistry and structure of esseneite (CaFe3+AlSi2O6), a new pyroxene produced by pyrometamorphism. Am Min 72: 148–156Google Scholar
  6. Curtis LW, Gittins J (1979) Aluminous and titaniferous clinopyroxenes from regionally metamorphosed agpaitic rocks in central Labrador. J Petrol 20: 165–186Google Scholar
  7. Dana ES (1892) The system of mineralogy, 6th edition. John Wiley and Sons, New YorkGoogle Scholar
  8. Deer WA, Howie RA, Zussman J (1963) Rock-forming minerals. Vol 2, First ed. Singlechain silicates. Longman, Gren and Co LTD, LondonGoogle Scholar
  9. ——, ——, —— (1978) Rock-forming minerals, Vol 2 A, Second ed, Single-chain silicates. Longman, London and John Wiley and Sons Inc, New YorkGoogle Scholar
  10. De Vine JD, Sigurdsson H (1980) Garnet-fassaite calcsilicate nodule from La Soufriere, St. Vincent. Am Min 65: 302–305Google Scholar
  11. Dowty E, Clark JR (1973) Crystal structure refinement and optical properties of a Ti3+ fassaite from the Allende meteorite. Am Min 58: 230–240Google Scholar
  12. Essene EJ, Fyfe WS (1967) Omphacite in California metamorphic rocks. Contrib Mineral Petrol 15: 1–23Google Scholar
  13. —— (1987) Petedunnite (CaZnSi2O6), a new zinc clinopyroxene from Franklin, New Jersey, and phase equilibria for zincian pyroxenes. Am Min 72: 157–166Google Scholar
  14. Ford WE (1932) A textbook of mineralogy. John Wiley and Sons, Inc, New YorkGoogle Scholar
  15. Jaffe HW, Jaffe EB, Tracy RJ (1978) Orthoferrosilite and other iron-rich pyroxenes in microperthite gneiss of the Mount Marcy area, Adirondack Mountains. Am Min 63: 116–136Google Scholar
  16. Kobayashi H (1977) Kanoite, (Mn+ Mg)2[Si2O6], a new clinopyroxene in the metamorphic rock from Tatehira, Oshima Peninsula, Hokkaido, Japan. J Geol Soc Jap 83: 537–542Google Scholar
  17. Leake BE, Winchell H (1978) Nomenclature of amphiboles. Am Min 63: 1023–1052Google Scholar
  18. Mason B (1974) Aluminum-titanium-rich pyroxenes, with special reference to the Allende meteorite. Am Min 59: 1198–1202Google Scholar
  19. Mellini M, Merlino S, Orlandi P, Rinaldi R (1982) Cascadite and jervisite, two new scandium silicates from Baveno, Italy. Am Min 67: 599–603Google Scholar
  20. Morimoto N, Kitamura M (1983) Q-J diagram for classification of pyroxenes. J Jap Assoc Mineral Petrol Econ Geol 78: 141 (in Japanese)Google Scholar
  21. Nickel EH, Mandarino JA (1987) Procedures involving the IMA Commission on New Minerals and Mineral Names, and guidelines on mineral nomenclature. Can Min 25: 353–377Google Scholar
  22. Papike JJ (ed) (1969) Pyroxenes and Amphiboles: crystal chemistry and phase petrology. Mineralogical Society of America, Special Paper, No 2Google Scholar
  23. Petersen EU, Anovitz LM, Essene EJ (1984) Donpeacorite, (Mn,Mg)MgSi2O6, a new orthopyroxene and its proposed phase relations in the system MnSiO3-MgSiO3-FeSiO3. Am Min 69: 472–480Google Scholar
  24. Prewitt CT (ed) (1980) Reviews in mineralogy, 7. Pyroxenes. Mineralogical Society of America, Washington, DCGoogle Scholar
  25. Robinson P (1980) The composition space of terrestrial pyroxenes-Internal and external limits. In:Prewitt CT (ed) Reviews in Mineralogy, 7. Pyroxenes. Mineralogical Society of American, Washington, DC, pp 419–494Google Scholar
  26. Schaller WT (1930) Adjectival ending of chemical elements used as modifiers to mineral names. Am Min 15: 566–574Google Scholar
  27. Strunz H (1970) Mineralogische Tabellen, 5. Auflage. Akademische Verlagsgesellschaft Geest and Portig KG, LeipzigGoogle Scholar
  28. Tracy RJ, Robinson P (1977) Zonal titanian augite in alkali olivine basalt from Tahiti and the nature of titanium substitutions in augite. Am Min 62: 634–645Google Scholar
  29. Tschermak G (1897) Lehrbuch der Mineralogie. Alfred Hölder, WienGoogle Scholar
  30. Vieten K, Hamm HM (1978) Additional notes “On the calculation of the crystal chemical formula of clinopyroxenes and their contents of Fe3+ from microprobe analyses.” Neues Jahrbuch für Mineralogie, Monatshefte, pp 71–83Google Scholar
  31. Winchell AN, Winchell H (1951) Elements of optical mineralogy. John Wiley and Sons, Inc, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • N. Morimoto
    • 1
  1. 1.Department of Geology and MineralogyKyoto UniversityKyotoJapan

Personalised recommendations