Advertisement

International Journal of Legal Medicine

, Volume 106, Issue 2, pp 85–90 | Cite as

The application of mitochondrial DNA typing to the study of white Caucasian genetic identification

  • Romelle Piercy
  • K. M. Sullivan
  • Nicola Benson
  • P. Gill
Original Articles

Summary

Mitochondrial DNA (mtDNA) from 100 unrelated British White Caucasians was extracted, amplified and directly sequenced. Sequences of approximately 800 nucleotides were obtained from 2 hypervariable segments within the non-coding region of the mitochondrial genome. A total of 91 different sequences were observed with an average nucleotide diversity of 1.1%. The most diverse pair of sequences differed at 3.6% of their nucleotide (nt) sites. Comparison to a consensus reference sequence showed that each region was polymorphic to a similar extent. Different methods of genetic analysis were used to examine the variation in each region, including pairwise comparisons, which demonstrated that although the data did not fit a Poisson distribution, the fit was closer to a Negative Binomial distribution.

Key words

Mitochondrial DNA White Caucasian Hypervariable sites Pairwise distribution 

Zusammenfassung

Die mitochondriale DNA (mtDNA) von 100 unverwandten britischen Kaukasiern wurde extrahiert, amplifiziert und direkt sequenziert. Die Sequenzen von ungefähr 800 Nucleotiden wurden von 2 hypervariablen Segmenten innerhalb der nicht-kodierenden Region des mitochondrialen Genoms erhalten. Insgesamt wurden 91 unterschiedliche Sequenzen beobachtet mit einer durchschnittlichen Nukleotid-Diversifität von 1,1 %. Die meisten unterschiedlichen Sequenz-Paare differierten an 3,6% ihrer Nukleotid-(nt)-Positionen. Ein Vergleich mit einer Konsensus-Sequenz zeigte, daß jede Region bis zu einem ähnlichen Ausmaß polymorph war. Unterschiedliche Methoden der genetischen Analyse wurden angewandt, um die Variation in jeder Region zu untersuchen, unter Einschluß paarweiser Vergleiche. Diese Untersuchung zeigte, daß die Daten nicht einer Poisson-Verteilung entsprachen, sie paßten eher zu einer negativen Binomial-Verteilung.

Schlüsselwörter

Mitochondriale DNA Weiße Kaukasier Hypervariable Orte Paarweise Verteilung 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Orrego C, King MC (1990) Determination of familial relationships. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. Academic press, London and San Diego, pp 416–426Google Scholar
  2. 2.
    Hopgood R, Sullivan KM, Gill P (1992) Strategies for automated sequencing of human mitochondrial DNA directly from PCR products. Biotechniques 13:82–92PubMedGoogle Scholar
  3. 3.
    Sullivan KM, Hopgood R, Gill P (1992) Identification of human remains by amplification and automated sequencing of mitochondrial DNA. Int J Leg Med 105:83–86Google Scholar
  4. 4.
    Sullivan KM, Hopgood R, Lang B, Gill P (1991) Automated amplification and sequencing of human mitochondrial DNA. Electrophoresis 12:17–21PubMedGoogle Scholar
  5. 5.
    Stoneking M, Hedgecock D, Higuchi RG, Vigilant L, Erlich HA (1991) Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence specific oligonucleotide probes. Am J Hum Genet 48:370–382PubMedGoogle Scholar
  6. 6.
    Ginther C, Issel-Tarver L, King M (1992) Identifying individuals by sequencing mitochondrial DNA from teeth. Nat Genet 2:135–138PubMedGoogle Scholar
  7. 7.
    Wrischnik LA, Higuchi RG, Stoneking M, Erlich HA, Arnheim N, Wilson AC (1987) Length mutations in human mtDNA: direct sequencing of enzymatically amplified DNA. Nucleic Acids Res 15:529–542PubMedGoogle Scholar
  8. 8.
    Hess JF, Parisi MA, Bennett JL, Clayton DA (1991) Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalmoyopathies. Nature 351:236–239PubMedGoogle Scholar
  9. 9.
    McShane MA, Hammans SR, Sweeney M, Holt IJ, Beattie TJ, Brett EM, Harding AE (1991) Pearson Syndrome and mitochondrial encephalomyopathy in a patient with a deletion of mtDNA. Am J Hum Genet 48:39–42PubMedGoogle Scholar
  10. 10.
    Lestienne P (1992) Mitochondrial DNA mutations in human diseases: a review. Biochimie 74:123–130PubMedGoogle Scholar
  11. 11.
    Trischler H-J, Andreetta F, Moreas CT, Bonilla E, Arnaudo E, Danon MJ, Glass S, Zelaya BM, Vamos E, Telerman-Toppet N, Shanske S, Kadenbach B, DiMauro S, Schon EA (1992) Mitochondrial myopathy of childhood associated with depletion of mitochondrial DNA. Neurology 42:209–217PubMedGoogle Scholar
  12. 12.
    Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312PubMedGoogle Scholar
  13. 13.
    Kocher TD, Wilson AC (1991) Sequence evolution of mitochondrial DNA in humans and chimpanzees: control region and a protein-coding regoin. In: Osawa S, Honjo T (eds) Evolution of life. Springer, Tokyo. pp 391–413Google Scholar
  14. 14.
    Lundstrom R, Tavare S, Ward RH (1992) Estimating substitution rates from molecular data using the coalescent. Proc Natl Acid Sci USA 89:5961–5965Google Scholar
  15. 15.
    Hasegawa M, Horai S (1991) Time of the deepest root for polymorphism in human mitochondrial DNA. J Mol Evol 32:37–42PubMedGoogle Scholar
  16. 16.
    Pesole G, Sbisa E, Preparata G, Saccone C (1992) The evolution of the mitochondrial D-loop region and the origin of modern man. Mol Biol Evol 9:587–598PubMedGoogle Scholar
  17. 17.
    Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC (1991) African populations and the evolution of human mitochondrial DNA. Science 253:1503–1507PubMedGoogle Scholar
  18. 18.
    Thomas WK, Beckenbach AT (1989) Variation on Salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution. J Mol Evol 29:233–245PubMedGoogle Scholar
  19. 19.
    Horei S, Matsunaga E (1986) MtDNA polymorphism in Japanese. Hum Genet 72:105–117PubMedGoogle Scholar
  20. 20.
    Merriwether DA, Clark AG, Ballinger SW, Schutt TG, Soodyall H, Jenkins T, Sherry ST, Wallace DC (1991) The structure of human mitochondrial DNA variation. J Mol Evol 33:543–555PubMedGoogle Scholar
  21. 21.
    Brega A, Gardella R, Semino S, Morpurgo G, Astaldi Ricotti GB, Wallace DC, Santachiara Benerecetti AS (1986) Genetic studies on the Tharu population of Nepal: restriction endonuclease polymorphisms of mtDNA. Am J Hum Genet 39:502–512PubMedGoogle Scholar
  22. 22.
    Denaro M, Blanc H, Johnson MJ, Chen KH, Wilmsen E, Cavalli-Sforza LL, Wallace DC (1981) Ethnic variation in Hpa I endonuclease cleavage patterns of human mitochondrial DNA. Proc Natl Acad Sci USA 78:5768–5772PubMedGoogle Scholar
  23. 23.
    Bonné-Tamir B, Johnson MJ, Natali A, Wallace DC, CavalliSforza LL (1986) Human mtDNA types in two Israeli populations - a comparative study at the DNA level. Am J Hum Genet 38:341–351PubMedGoogle Scholar
  24. 24.
    Vigilant L, Pennington R, Harpending H, Kocher TD (1989) Mitochondrial DNA sequences in single hairs from a Southern African population. Proc Natl Acad Sci USA 86:9350–9354PubMedGoogle Scholar
  25. 25.
    Di Rienzo A, Wilson AC (1991) Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc Natl Acad Sci USA 88:1597–1601PubMedGoogle Scholar
  26. 26.
    Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144PubMedGoogle Scholar
  27. 27.
    Horai S, Kondo R, Murayama K, Hayashi S, Koike H, Nakai N (1991) Phylogenetic affiliation of ancient and contemporary humans inferred from mitochondrial DNA. Philos Trans R Soc Lond [Biol] 33:409–417Google Scholar
  28. 28.
    Maddison DR (1991) African origin of human mitochondrial DNA reexamined. Syst Zool 40:355–363Google Scholar
  29. 29.
    Templeton AR, Hedges SB, Kumar S, Tamura K, Stoneking M (1991) Human origins and analysis of mitochondrial DNA sequences. Science 255:737Google Scholar
  30. 30.
    Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:457–465Google Scholar
  31. 31.
    Nei M (1982) Evolution of human races at the gene level. In: Human genetics part A: The unfolding genome. Alan R. Liss, New York, pp 167–181Google Scholar
  32. 32.
    Anderson S, Bankier AT, Barrell BG, de Brujin MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organisation of the human mitochondrial genome. Nature 290:457–465PubMedGoogle Scholar
  33. 33.
    Greenberg BD, Newbold JE, Sugino A (1983) Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene 21:33–49PubMedGoogle Scholar
  34. 34.
    Swofford DL (1989) PAUP, Phylogenetic Analysis Using Parsimony. Illinois Natural History Survey, Champaign, USA. Version 3.0 gGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Romelle Piercy
    • 1
  • K. M. Sullivan
    • 1
  • Nicola Benson
    • 1
  • P. Gill
    • 1
  1. 1.Central Research and Support Establishment, Forensic Science ServiceBerkshireUK

Personalised recommendations