Archiv der Mathematik

, Volume 34, Issue 1, pp 440–451

Werteverteilung von Zetafunktionen

  • Axel Reich
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    H. Bauermeister, Fastperiodizitätseigenschaften Dirichletscher Reihen. Ann. Polen. Math.32, 13–22 (1976).Google Scholar
  2. [2]
    H.Behnke und F.Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen. Berlin 1962.Google Scholar
  3. [3]
    R.Ph.Boas, Entire Functions. New York 1954.Google Scholar
  4. [4]
    K. Chandrasekharan andR. Narasimhan, The Approximate Functional Equation for a Class of Zeta-Functions. Math. Ann.152, 30–64 (1963).Google Scholar
  5. [5]
    V. P. Fonf, Conditionally convergent series in a uniformly smooth Banach space. Mat. Zametki11, 209–214 (1972) [Russisch].Google Scholar
  6. [6]
    L.Kuipers and H.Niederreiter, Uniform distribution of sequences. New York 1974.Google Scholar
  7. [7]
    H. L.Montgomery, Topics in multiplicative number theory. LNM227, Berlin 1971.Google Scholar
  8. [8]
    W.Narkiewicz, Elementary and analytic theory of algebraic numbers. Warschau 1974.Google Scholar
  9. [9]
    A. Reich, Universelle Werteverteilung von Eulerprodukten. Nachr. Akad. Wiss. Göttingen. II. Math.-phys.K1. 1977, Nr. 1, 1–17.Google Scholar
  10. [10]
    S. M. Voronin, The distribution of the nonzero values of the Rieman ζ-function. Trudy mat. Inst. Steklov128, 131–150 (1972) [Russisch].Google Scholar
  11. [11]
    S. M. Voronin, On differential independence of ζ-functions. Dokl. Akad. Nauk SSSR209, 1264–1266 (1973) [Russisch].Google Scholar
  12. [12]
    S. M. Voronin, Theorem über die „Universalität“ der Riemannschen Zeta-Funktion. Isvestja Akad. Nauk SSSR39, Seria Mat., 475–486 (1975) [Russisch].Google Scholar
  13. [13]
    A. Winter, Random factorizations and Riemann's Hypothesis. Duke Math. J.11, 267–275 (1944).Google Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • Axel Reich
    • 1
  1. 1.Mathematisches InstitutGöttingen

Personalised recommendations