Archiv der Mathematik

, Volume 27, Issue 1, pp 120–122

The Wedderburn-Mal'cev theorems in a locally finite setting

  • Ian Stewart
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. A.Albert, Structure of algebras. Providence 1939.Google Scholar
  2. [2]
    C. W. Curtis, The structure of non-semisimple algebras. Duke Math. J.21, 79–85 (1954).Google Scholar
  3. [3]
    N.Jacobson, Structure of rings. Providence 1956 (revised 1964).Google Scholar
  4. [4]
    A. I. Mal'cev, On the representation of an algebra as a direct sum of the radical and a semi-simple subalgebra. Dokl. Akad. Nauk. SSSR36, 42–45 (1942).Google Scholar
  5. [5]
    R. B. Reisel, A generalization of the Wedderburn-Mal'cev theorem to infinite-dimensional algebras. Proc. Amer. Math. Soc.7, 493–499 (1956).Google Scholar
  6. [6]
    I. N. Stewart, Structure theorems for a class of locally finite Lie algebras. Proc. London Math. Soc. (3)24, 79–100 (1972).Google Scholar
  7. [7]
    I. N. Stewart, Levi factors of infinite-dimensional Lie algebras. J. London Math. Soc. (2)5, 488 (1972).Google Scholar
  8. [8]
    I. N. Stewart, Conjugacy theorems for a class of locally finite Lie algebras. Compositio Math.30, 181–210 (1975).Google Scholar
  9. [9]
    D. Zelinsky, Raising idempotents. Duke Math. J.21, 315–322 (1954).Google Scholar

Copyright information

© Birkhäuser Verlag 1976

Authors and Affiliations

  • Ian Stewart
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryEngland

Personalised recommendations