Archiv der Mathematik

, Volume 28, Issue 1, pp 422–430

A functional calculus for hermitian elements of complex Banach algebras

  • Heinz König
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.Bochner and K.Chandrasekharan, Fourier Transforms. Princeton 1949.Google Scholar
  2. [2]
    F. F.Bonsall and J.Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. Cambridge 1971.Google Scholar
  3. [3]
    F. F.Bonsall and J.Duncan, Numerical Ranges II. Cambridge 1973.Google Scholar
  4. [4]
    F. F.Bonsall and J.Duncan, Complete Normed Algebras. Berlin-Heidelberg-New York 1973.Google Scholar
  5. [5]
    Ion Colojoara andCiprian Foias, Theory of Generalized Spectral Operators. New York-London-Paris 1968.Google Scholar
  6. [6]
    Shmuel Kantorovitz, Classification of Operators by means of their Operational Calculus. Trans. Amer. Math. Soc.115, 194–224 (1965).Google Scholar
  7. [7]
    Yitzhak Katznelson, An Introduction to Harmonic Analysis. New York-London-Sydney-Toronto 1968.Google Scholar
  8. [8]
    A. M. Sinclair, The Norm of a Hermitian Element in a Banach Algebra. Proc. Amer. Math. Soc.28, 446–450 (1971).Google Scholar
  9. [9]
    H. G. Tillmann, Eine Erweiterung des Funktionalkalküls für lineare Operatoren. Math. Ann.151, 424–430 (1963).Google Scholar

Copyright information

© Birkhäuser Verlag 1977

Authors and Affiliations

  • Heinz König
    • 1
  1. 1.Fachbereich MathematikUniversität des SaarlandesSaarbrückenBundesrepublik Deutschland

Personalised recommendations