Communications in Mathematical Physics

, Volume 67, Issue 1, pp 1–16 | Cite as

The partition function of a degenerate functional

  • A. S. Schwarz


The partition function of a degenerate quadratic functional is defined and studied. It is shown that Ray-Singer invariants can be interpreted as partition functions of quadratic functionals. In the case of a degenerate non-quadratic functional the semiclassical approximation to the partition function is considered.


Neural Network Statistical Physic Complex System Partition Function Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Faddeev, L.: Teor. Mat. Fiz.1, 3–18 (1969)Google Scholar
  2. 2.
    Ray, D., Singer, I.: Advan. Math.7, 145–210 (1971)Google Scholar
  3. 3.
    Ray, D., Singer, I.: Ann. Math.98, 154–177 (1973)Google Scholar
  4. 4.
    Schwarz, A.: Lett. Math. Phys.2, 201–205, 247–252 (1978)Google Scholar
  5. 5.
    Schwarz, A.: Commun. Math. Phys.64, 233–268 (1979)Google Scholar
  6. 6.
    Seeley, R.: Proc. Symp. Pure Math.10, 288–307 (1971)Google Scholar
  7. 7.
    Greiner, P.: Arch. Rat. Mech. Anal.41, 163–217 (1971)Google Scholar
  8. 8.
    Frolov, I., Schwarz, A.: Zh. ETF Lett.28, 273–276 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • A. S. Schwarz
    • 1
  1. 1.Department of Theoretical PhysicsMoscow Physical Engineering InstituteMoscowUSSR

Personalised recommendations