Journal of Soviet Mathematics

, Volume 7, Issue 6, pp 974–1065 | Cite as

Theory of dynamical systems and general transformation groups with invariant measure

  • A. B. Katok
  • Ya. G. Sinai
  • A. M. Stepin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. M. Abramov, “Metric automorphisms with quasidiscrete spectra,” Izv. Akad. Nauk SSSR, Ser. Mat.,26, No. 4, 513–530 (1962).Google Scholar
  2. 2.
    V. M. Alekseev, “Invariant Markovian subsets of diffeomorphisms,” Usp. Mat. Nauk,23, No. 2, 209–210 (1968).Google Scholar
  3. 3.
    V. M. Alekseev, “Quasirandom dynamical systems. I. Quasirandom diffeomorphisms,” Mat. Sb.,76, No. 1, 72–134 (1968).Google Scholar
  4. 4.
    V. M. Alekseev, “Quasirandom dynamical systems. II. One-dimensional nonlinear oscillations in a periodically perturbed field,” Mat. Sb.,77, No. 1, 545–601 (1968).Google Scholar
  5. 5.
    V. M. Alekseev, “Quasirandom dynamical systems. III. Quasirandom oscillations of one-dimensional oscillators,” Mat. Sb.,78, No. 1, 3–50 (1969).Google Scholar
  6. 6.
    V. M. Alekseev, “Quasirandom dynamical systems. Review by the author of his doctoral dissertation in the physical-mathematical sciences,” Mat. Zametki,6, No. 4, 489–498 (1969).Google Scholar
  7. 7.
    V. M. Alekseev, “Perron sets and topological Markov chains,” Usp. Mat. Nauk,24, No. 5, 227–228 (1969).Google Scholar
  8. 8.
    V. M. Alekseev, “Quasirandom oscillations and qualitative questions of celestial mechanics,” in: Tenth Mathematical Summer School [in Russian], In-t Mat., Akad. Nauk Urk. SSR, Kiev (1972), pp. 212–341.Google Scholar
  9. 9.
    D. V. Anosov, “Geodesic flows on closed Riemannian manifolds of negative curvature,” Tr. Mat. Inst., Akad. Nauk SSSR, 90 (1967).Google Scholar
  10. 10.
    D. V. Anosov, “On a class of invariant sets of smooth dynamical systems,” in: Transactions of the Fifth International Conference on Nonlinear Oscillations [in Russian], Vol. 2, Kiev (1970), pp. 39–45.Google Scholar
  11. 11.
    D. V. Anosov, “On tangent fields of transversal fibrations iny-systems,” Mat. Zametki,2, No. 5, 539–548 (1967).Google Scholar
  12. 12.
    D. V. Anosov, “On additive functional homological equations connected with ergodic rotations of the circle,” Izv. Akad. Nauk SSSR, Ser. Mat.,37, No. 6, 1259–1274 (1973).Google Scholar
  13. 13.
    D. V. Anosov, “Existence of smooth ergodic flows on smooth manifolds,” Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 3, 518–545 (1974).Google Scholar
  14. 14.
    D. V. Anosov and A. B. Katok, “New examples of ergodic diffeomorphisms of smooth manifolds,” Usp. Mat. Nauk,25, No. 4, 173–174 (1970).Google Scholar
  15. 15.
    D. V. Anosov and A. B. Katok, “New examples in smooth ergodic theory. Ergodic diffeomorphisms,” Tr. Mosk. Mat. O-va,23, 3–36 (1970).Google Scholar
  16. 16.
    D. V. Anosov and Ya. G. Sinai, “Some smooth ergodic systems,” Usp. Mat. Nauk,22, No. 5(137), 107–172 (1967).Google Scholar
  17. 17.
    L. Auslander, L. Green, and F. Hahn, Flows on Homogeneous Spaces [Russian translation], Mir, Moscow (1966).Google Scholar
  18. 18.
    R. M. Belinskaya, “Decomposition of a Lebesgue space into trajectories defined by metric automorphisms,” Funktsional'. Analiz Ego Prilozhen.,2, No. 3, 4–16 (1968).Google Scholar
  19. 19.
    R. M. Belinskaya, “Generalized powers of automrophism and entropy,” Sib. Mat. Zh.,11, No. 4, 739–749 (1970).Google Scholar
  20. 20.
    R. M. Belinskaya, “Entropy of skew products,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 3–14 (1973).Google Scholar
  21. 21.
    R. M. Belinskaya, “Entropy of stepwise-powers of skew products,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 12–17 (1974).Google Scholar
  22. 22.
    P. Billingsley, Ergodic Theory and Information, Wiley (1965).Google Scholar
  23. 23.
    A. A. Blokhin, “Smooth ergodic flows on surfaces,” Tr. Mosk. Mat. O-va,27, 113–128 (1972).Google Scholar
  24. 24.
    M. I. Brin, “Lower bound of entropy of smooth dynamical systems,” Funktsional'. Analiz Ego Prilozhen.,8, No. 3, 71–72 (1974).Google Scholar
  25. 25.
    M. I. Brin, “Topological transitivity of a class of dynamical systems and frame flows on manifolds of negative curvature,” Funktsional'. Analiz Ego Prilozhen.,9, No. 1, 9–19 (1975).Google Scholar
  26. 26.
    M. I. Brin, “Topological group extensions ofy-systems,” Mat. Zametki,18, No. 3, 455–467 (1975).Google Scholar
  27. 27.
    M. I. Brin and Ya. B. Pesin, “Partially hyperbolic dynamical systems,” Usp. Mat. Nauk.,28, No. 3, 169–170 (1973).Google Scholar
  28. 28.
    M. I. Brin and Ya. B. Pesin, “Frame flows on manifolds of negative curvature,” Usp. Mat. Nauk,28, No. 4, 209–210 (1973).Google Scholar
  29. 29.
    M. I. Brin and Ya. B. Pesin, “Partially hyperbolic dynamical systems,” Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 1, 170–212 (1974).Google Scholar
  30. 30.
    A. A. Brudno, “On a property of topological entropy,” Usp. Mat. Nauk,29, No. 1, 160 (1974).Google Scholar
  31. 31.
    L. A. Bunimovich, “On a transformation of the circle,” Mat. Zametki,8, No. 2, 205–216 (1970).Google Scholar
  32. 32.
    L. A. Bunimovich, “The central limit theorem for dissipative billiards,” Dokl. Akad. Nauk SSSR,204, No. 4, 778–781 (1972).Google Scholar
  33. 33.
    L. A. Bunimovich, “On ergodic properties of billiards, close to dissipative,” Dokl. Akad. Nauk SSSR,211, No. 5, 1024–1026 (1973).Google Scholar
  34. 34.
    L. A. Bunimovich, “Inclusion of Bernoulli shifts in some special flows,” Usp. Mat. Nauk,28, No. 3, 171–172 (1973).Google Scholar
  35. 35.
    L. A. Bunimovich, “The central limit theorem for a class of billiards,” Teor. Veroyatn. Ee Primen.,19, No. 1, 63–83 (1974).Google Scholar
  36. 36.
    L. A. Bunimovich, “On a class of special flows,” Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 1, 213–227 (1974).Google Scholar
  37. 37.
    L. A. Bunimovich, “On billiards, close to dissipative,” Mat. Sb.,95, No. 1, 49–73 (1974).Google Scholar
  38. 38.
    L. A. Bunimovich, “On ergodic properties of some billiards,” Funktsional'. Analiz. Ego Prilozhen.,8, No. 3, 73–74 (1974).Google Scholar
  39. 39.
    L. A. Bunimovich and Ya. G. Sinai, “On a basic theorem of the theory of dissipative billiards,” Mat. Sb.,90, No. 3, 415–431 (1973).Google Scholar
  40. 40.
    B. F. Bylov, R. É. Vinograd, D. M. Grobman, and V. V. Nemytski, The Theory of Lyapunov Exponents and Its Applications to Stability Questions [in Russian], Nauka, Moscow (1966).Google Scholar
  41. 41.
    A. M. Vershik, “A theorem on lacunary isomorphism of monotone sequences of partitions,” Funktsional'. Analiz Ego Prilozhen.,2, No. 3, 17–21 (1968).Google Scholar
  42. 42.
    A. M. Vershik, “Decreasing sequences of measurable partitions and their applications,” Dokl. Akad. Nauk SSSR,193, No. 4, 748–751 (1970).Google Scholar
  43. 43.
    A. M. Vershik, “Nonmeasurable partitions, trajectory theory, operator algebras,” Dokl. Akad. Nauk SSSR,199, No. 5, 1004–1007 (1971).Google Scholar
  44. 44.
    A. M. Vershik, “A continuum of pairwise nonisomorphic dyadic sequences,” Funktsional'. Analiz Ego Prilozhen.,5, No. 3, 16–18 (1971).Google Scholar
  45. 45.
    A. M. Vershik, “Arrangement of tame partitions,” Usp. Mat. Nauk,27, No. 3, 195–196 (1972).Google Scholar
  46. 46.
    A. M. Vershik, “Four definitions of the scale of an automorphism,”7, No. 3, 1–17 (1973).Google Scholar
  47. 47.
    A. M. Vershik, “Countable groups close to finite,” Appendix to: F. Greenleaf, Invariand Means on Topological Groups [Russian translation], Mir, Moscow (1973).Google Scholar
  48. 48.
    A. M. Vershik and S. A. Yuzvinskii, “Dynamical systems with invariant measure,” in: Mathematical Analysis. 1967. Summary of Science [in Russian], VINITI AN SSSR, Moscow (1969).Google Scholar
  49. 49.
    G. Vinokurov, “Two nonisomorphic strict endomorphisms of a Lebesgue space with isomorphic sequences of partitions,” in: Stochastic Processes and Related Questions [in Russian], Fan, Tashkent (1970), pp. 43–45.Google Scholar
  50. 50.
    V. G. Vinokurov and S. A. Rubshtein, “Extensions of decreasing sequences of partitions of a Lebesgue space,” in:Stochastic Processes and Statistical Inference [in Russian], Vol. 2, Fan, Tashkent (1972), pp. 49–61.Google Scholar
  51. 51.
    V. G. Vinokurov, S. A. Rubshtein, and V. K. Tsipuridu, “Roots of measurable partitions and roots of ergodic endomorphisms,” in: Stochastic Processes and Statistical Inference [in Russian], Vol. 2, Fan, Tashkent (1972), pp. 62–66.Google Scholar
  52. 52.
    V. G. Vinokurov and V. K. Tsipuridu, “On a class of semigroups of endomorphisms,” Dokl. Akad. Nauk Uzb. SSR, No. 11, 5–6 (1972).Google Scholar
  53. 53.
    K. L. Volkovysskii and Ya. G. Sinai, “Ergodic properties of an ideal gas with an infinite number of degrees of freedom,” Funktsional'. Analiz Ego Prilozhen.,5, No. 3, 19–21 (1971).Google Scholar
  54. 54.
    N. N. Ganikhodzhaev, “On group endomorphisms of the two-dimensional torus,” Dokl. Akad. Nauk Uzb. SSR, No. 11, 3–4 (1972).Google Scholar
  55. 55.
    I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Integral Geometry and Its Connections with Questions of the Theory of Representations. Generalized Functions [in Russian], Vol. 5, Fizmatgiz, Moscow (1962).Google Scholar
  56. 56.
    I. M. Gel'fand and S. V. Fomin, “Geodesic flows on manifolds of constant negative curvature,” Usp. Mat. Nauk,47, No. 1, 118–137 (1952).Google Scholar
  57. 57.
    V. Ya. Golodets, “On quasiinvariant ergodic measures,” Mat. Sb.,72, No. 4, 558–572 (1967).Google Scholar
  58. 58.
    V. Ya. Golodets, “On approximative finite groups of transformations of spaces with measures,” Usp. Mat. Nauk,24, No. 4, 195–196 (1969).Google Scholar
  59. 59.
    V. Ya. Golodets, “On transformations, preserving a quasiinvariant measure,” Mat. Zametki,7, No. 2, 223–227 (1970).Google Scholar
  60. 60.
    M. I. Gordin, “On stochastic processes generated by number-theoretic endomorphisms,” Dokl. Akad. Nauk SSSR,182, No. 5, 1004–1006 (1968).Google Scholar
  61. 61.
    B. M. Gurevich, “Some conditions for the existence of K-partitions for special flows,” Tr. Mosk. Mat. O-va,17, 89–116 (1967).Google Scholar
  62. 62.
    B. M. Gurevich, “On a condition for the existence of K-partitions for special flows,” Usp. Mat. Nauk,24, No. 5, 233–234 (1969).Google Scholar
  63. 63.
    B. M. Gurevich, “Topological entropy of countable Markov chains,” Dokl. Akad. Nauk SSSR,187, No. 4, 715–718 (1969).Google Scholar
  64. 64.
    B. M. Gurevich, “Entropy of shifts and Markovian measures in the space of paths of a countable graph,” Dokl. Akad. Nauk SSSR,192, No. 5, 963–965 (1970).Google Scholar
  65. 65.
    B. M. Gurevich, “On invariant measures with maximal entropy fory-diffeomorphisms,” Funktsional'. Analiz Ego Prilozhen.,4, No. 4, 21–30 (1970).Google Scholar
  66. 66.
    B. M. Gurevich, “On one-sided and two-sided regularity of stationary stochastic processes,” Dokl. Akad. Nauk SSSR,210, No. 4, 763–766 (1973).Google Scholar
  67. 67.
    B. M. Gurevich and V. I. Oseledets, “The Gibbs distribution and dissipativeness ofy-diffeomorphisms,” Dokl. Akad. Nauk SSSR,209, No. 5, 1021–1023 (1973).Google Scholar
  68. 68.
    B. M. Gurevich and Ya. G. Sinai, “Automorphisms of the torus and Markov chains,” Appendix to: P. Billingsley, Ergodic Theory and Information Theory, Wiley (1965).Google Scholar
  69. 69.
    B. M. Gurevich, Ya. G. Sinai, and Yu. M. Sukhov, “On invariant measures of dynamical systems of one-dimensional statistical mechanics,” Usp. Mat. Nauk,28, No. 5, 45–82 (1973).Google Scholar
  70. 70.
    B. M. Gurevich and Yu. M. Sukhov, “Stationary solutions of Bogolyubov chains of equations in classical statistical mechanics,” Dokl. Akad. Nauk SSSR,233, No. 2, 276–279 (1975).Google Scholar
  71. 71.
    E. I. Dinaburg, “An example of the calculation of topological entropy,” Usp. Mat. Nauk,23, No. 4, 249–250 (1968).Google Scholar
  72. 72.
    E. I. Dinaburg, “The relation between topological entropy and metric entropy,” Dokl. Akad. Nauk SSSR,190, No. 1, 19–22 (1970).Google Scholar
  73. 73.
    E. I. Dinaburg, “A connection between various entropy characteristics of dynamical system,” Izv. Akad. Nauk SSSR, Ser. Mat.,35, No. 2, 324–366 (1971).Google Scholar
  74. 74.
    V. T. Dubrovin, “Multidimensional central limit theorem for number-theoretic endomorphisms,” in: Probabilistic Methods and Cybernetics [in Russian], Vols. 10–11, Kazan Univ., Kazan (1974), pp. 17–29.Google Scholar
  75. 75.
    A. Yu. Zhirov and Yu. I. Ustinov, “Topological entropy of a one-dimensional Williams solenoid,” Mat. Zametki,14, No. 6, 859–866 (1973).Google Scholar
  76. 76.
    G. M. Zaslavskii, Statistical Irreversibility in Nonlinear Systems [in Russian], Nauka, Moscow (1970).Google Scholar
  77. 77.
    A. N. Zemlyakov, “Construction of dynamics in one-dimensional systems of statistical physics in the case of nonfinitary potentials,” Usp. Mat. Nauk,28, No. 1, 239–240 (1973).Google Scholar
  78. 78.
    A. N. Semlyakov and A. B. Katok, “Topological transitivity of billiards in polygons,” Mat. Zametki,18, No. 2, 291–301 (1975).Google Scholar
  79. 79.
    I. A. Ibragimov, “On spectra of special Gaussian sequences, satisfying the condition of strongly mixing. II. Sufficient conditions. Speed of mixing,” Teor. Veroyatn. Ee Primen.,15, No. 1, 24–37 (1970).Google Scholar
  80. 80.
    I. A. Ibragimov and Yu. V. Linnik, Independently and Stationarily Connected Quantities [in Russian], Nauka, Moscow (1965).Google Scholar
  81. 81.
    R. S. Ismagilov, “On irreducible cycles, connected with dynamical systems,” Funktsional'. Analiz Ego Prilozhen.,3, No. 3, 92–93 (1969).Google Scholar
  82. 82.
    A. B. Katok, “Entropy and approximation of dynamical systems by periodic transformations,” Funktsional'. Analiz Ego Prilozhen.,1, No. 1, 75–85 (1967).Google Scholar
  83. 83.
    A. B. Katok, “Spectral properties of dynamical systems with integral invariants on the torus,” Funktsional'. Analiz Ego Prilozhen,1, No. 4, 46–56 (1967).Google Scholar
  84. 84.
    A. B. Katok, “Rotation number andy-flows,” Usp. Mat. Nauk,25, No. 5, 243–244 (1970).Google Scholar
  85. 85.
    A. B. Katok, “Ergodic flows generated by systems of weakly interacting oscillators,” in: Transactions of the Fifth International Conference on Nonlinear Oscillations, 1969 [in Russian], Vol. 2, Kiev (1970), pp. 216–221.Google Scholar
  86. 86.
    A. B. Katok, “Dynamical systems with hyperbolic structures,” in: Tenth Summer Mathematics School [in Russian], In-t Mat. Ukr. SSR, Kiev (1972), pp. 125–211.Google Scholar
  87. 87.
    A. B. Katok, “Minimal diffeomorphisms on principle S1-bundles,” in: Theses of the Sixth All-Union Topological Conference in Tbilisi [in Russian], Metsniereba, Tbilisi (1972).Google Scholar
  88. 88.
    A. B. Katok, “Invariant measures on flows on orientable surfaces,” Dokl. Akad. Nauk SSSR,211, No. 4, 775–778 (1973).Google Scholar
  89. 89.
    A. B. Katok, “Ergodic perturbations of degenerate integrable Hamiltonian systems,” Izv. Akad. Nauk SSSR, Ser. Mat.,37, No. 3, 539–576 (1973).Google Scholar
  90. 90.
    A. B. Katok, “Local properties of hyperbolic sets,” Appendix to: Z. Nitecki, Introduction to Differential Dynamics [Russian translation], Mir, Moscow (1975), pp. 214–232.Google Scholar
  91. 91.
    A. B. Katok, “Change of time, monotone equivalence and standard dynamical systems,” Dokl. Akad. Nauk SSSR,223, No. 4, 789–792 (1975).Google Scholar
  92. 92.
    A. B. Katok and A. M. Stepin, “On approximations of ergodic dynamical systems by periodic transformations,” Dokl. Akad. Nauk SSSR,171, No. 6, 1268–1271 (1966).Google Scholar
  93. 93.
    A. B. Katok and A. M. Stepin, “Approximations in ergodic theory,” Usp. Mat. Nauk,22, No. 5, 81–106 (1967).Google Scholar
  94. 94.
    A. B. Katok and A. M. Stepin, “Metric properties of homeomorphisms preserving measures,” Usp. Mat. Nauk,25, No. 2, 193–220 (1970).Google Scholar
  95. 95.
    A. B. Katok and Ch. Foiash, “On multiplicative operator functions on metric automorphisms,” Usp. Mat. Nauk,23, No. 3, 170–180 (1968).Google Scholar
  96. 96.
    A. A. Kirillov, “Dynamical systems, factors and group representations,” Usp. Mat. Nauk,22, No. 5, 67–80 (1967).Google Scholar
  97. 97.
    A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow (1972).Google Scholar
  98. 98.
    Yu. I. Kifer and S. A. Pirogov, “On decompositions of quasiinvariant measures into ergodic components,” Usp. Mat. Nauk,27, No. 5, 239–240 (1972).Google Scholar
  99. 99.
    A. N. Kolmogorov, “On dynamical systems with integral invariants on the torus,” Dokl. Akad. Nauk SSSR,93, No. 5, 763–766 (1953).Google Scholar
  100. 100.
    A. N. Kolmogorov, “A new metric invariant of transitive automorphisms of Lebesgue spaces,” Dokl. Akad. Nauk SSSR,119, No. 5, 861–864 (1958).Google Scholar
  101. 101.
    I. P. Kornfel'd, “On invariant measures of minimal dynamical systems,” Dokl. Akad. Nauk SSSR,202, No. 2, 280–283 (1972).Google Scholar
  102. 102.
    A. A. Kosyakin and E. A. Sandler, “Ergodic properties of a class of piecewise-smooth transformations of a segment,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 32–40 (1972).Google Scholar
  103. 103.
    A. V. Kochergin, “On the absence of mixing for special flows over rotations of circles and flows on a two-dimensional torus,” Dokl. Akad. Nauk SSSR,205, No. 3, 515–518 (1972).Google Scholar
  104. 104.
    A. V. Kochergin, “Change of time in flows and mixing,” Izv. Akad. Nauk SSSR, Ser. Mat.,37, No. 6, 1275–1298 (1973).Google Scholar
  105. 105.
    A. V. Kochergin, “On mixing in special flows over exchanges of segments and in smooth flows on surfaces,” Mat. Sb.,96, No. 3, 472–502 (1975).Google Scholar
  106. 106.
    A. B. Kramli, “Geodesic flows on compact Riemannian surfaces without focal points,” Usp. Mat. Nauk,27, No. 5, 245–246 (1972).Google Scholar
  107. 107.
    A. B. Kramli, “Flows of bihedra on three-dimensional manifolds of negative curvature,” Usp. Mat. Nauk,28, No. 4, 219–220 (1973).Google Scholar
  108. 108.
    A. B. Kramli, “Geodesic flows on compact Riemannian surfaces without focal points,” Stud. Sci. Math. Hungr.,8, No. 1–2, 59–78 (1973).Google Scholar
  109. 109.
    A. B. Krygin, “Extensions of diffeomorphisms preserving volume,” Funktsional', Analiz Ego Prilozhen.,5, No. 2, 72–76 (1971).Google Scholar
  110. 110.
    A. B. Krygin, “An example of a continuous flow on a torus with mixed spectrum,” Mat. Zametki,15, No. 2, 235–240 (1974).Google Scholar
  111. 111.
    Iosikhiro Kubokava, “Spectral characterization of the mixing properties of a flow (T),” Proc. Inst. Statist. Math.,17, No. 1, 1–4 (1969).Google Scholar
  112. 112.
    A. G. Kushnirenko, “On metric invariants of the type of entropy,” Usp. Mat. Nauk,11, No. 5, 57–66 (1967).Google Scholar
  113. 113.
    A. G. Kushnirenko, “Spectral properties of some dynamical systems with dispersive power,” Vestn. Mosk. Univ., Mat., Mekh., No. 1, 101–108 (1974).Google Scholar
  114. 114.
    A. M. Livshitz, “Some properties of the homology ofy-systems,” Mat. Zametki,10, No. 5, 555–564 (1971).Google Scholar
  115. 115.
    A. N. Livshits, “Cohomology of dynamical systems,” Izv. Akad. Nauk SSSR, Ser. Mat.,36, No. 6, 1296–1320 (1972).Google Scholar
  116. 116.
    A. N. Livshits, “Generators of automorphisms with finite entropy,” Vestn. Leningr. Univ., No. 1, 32–36 (1973).Google Scholar
  117. 117.
    A. N. Livshits and Ya. G. Sinai, “On invariant measures compatible with smoothness of transitivey-systems,” Dokl. Akad. Nauk SSSR, No. 5, 1039–1041 (1972).Google Scholar
  118. 118.
    E. G. Litinskii, “On the construction of invariant measures connected with noncommutative stochastic products,” Mat. Sb.,91, No. 1, 88–108 (1973).Google Scholar
  119. 119.
    S. A. Malkin, “An example of two metrically nonisomorphic ergodic automorphisms with identical simple spectra,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 69–74 (1968).Google Scholar
  120. 120.
    G. A. Margulis, “On some applications of ergodic theory to the study of manifolds of negative curvature,” Funktsional'. Analiz Ego Prilozhen.,3, No. 4, 89–90 (1969).Google Scholar
  121. 121.
    G. A. Margulis, “On some measures connected withy-flows on compact manifolds,” Funktsional'. Analiz Ego Prilozhen.,4, No. 1, 62–76 (1970).Google Scholar
  122. 122.
    G. A. Margulis, “Metric questions from the theory ofy-systems,” in: Tenth Summer School [in Russian], Inst. Mat., Akad. Nauk Ukr. SSR, Kiev (1972), pp. 342–348.Google Scholar
  123. 123.
    M. M. Mel'tser, B. A. Rubshtein, and P. S. Shvarts, “Calculation of the topological entropy of some diffeomorphisms,” Nauch. Tr. Tashkent Univ., No. 394 (1970), pp. 102–107.Google Scholar
  124. 124.
    V. M. Millionshchikov, “Criteria for the stability of the probabilistic spectrum of systems of differential equations with recurrent coefficients and criteria for almost reducibility of systems with almost periodic coefficients,” Mat. Sb.,78, No. 2, 79–201 (1969).Google Scholar
  125. 125.
    R. A. Minlos, “Gibbs limit distribution,” Funktsional'. Analiz Ego Prilozhen.,1, No. 2, 60–73 (1967).Google Scholar
  126. 126.
    R. A. Minlos, “Regularity of Gibbs limit distribution,” Funktsional'. Analiz Ego Prilozhen.,1, No. 3, 40–54 (1967).Google Scholar
  127. 127.
    A. S. Mishchenko, “Integrals of geodesic flows on groups,” Funktsional'. Analiz Ego Prilozhen.,4, No. 3, 73–77 (1970).Google Scholar
  128. 128.
    D. A. Moskvin, “On trajectories of ergodic endomorphisms of the two-dimensional torus, starting on a smooth curve,” in: Actual Problems of Analytic Number Theory [in Russian] Nauka i Tekhn.,” Minsk (1974), pp. 138–167.Google Scholar
  129. 129.
    Nguen Chin', “Homotopy properties of automorphism groups of Lebesgue spaces,” Vestn. Leningr. Univ., No. 19, 145–146 (1970).Google Scholar
  130. 130.
    V. I. Oseledets, “On spectra of ergodic automorphisms,” Dokl. Akad. Nauk SSSR,168, No. 5, 1009–1011 (1966).Google Scholar
  131. 131.
    V. I. Oseledets, “Multiplicative ergodic theorem. Characteristic exponents of Lyapunov of dynamical systems,” Tr. Mosk. O-va,19, 179–210 (1968).Google Scholar
  132. 132.
    V. I. Oseledets, “Automorphisms with simple and continuous spectrum without group properties,” Mat. Zametki,5, No. 3, 323–326 (1969).Google Scholar
  133. 133.
    V. I. Oseledets, “Two nonisomorphic dynamical systems with identical simple continuous spectra,” Funktsional'. Analiz Ego Prilozhen.,5, No. 3, 75–79 (1971).Google Scholar
  134. 134.
    V. T. Perekrest, “On exponential mixing iny-systems,” Usp. Mat. Nauk,29, No. 1, 181–182 (1974).Google Scholar
  135. 135.
    Ya. B. Pesin, “An example of a nonergodic flow with nonzero characterisitc exponents,” Funktsional'. Analiz Ego Prilozhen.,8, No. 3, 81–82 (1974).Google Scholar
  136. 136.
    B. S. Pitskel', “Some properties of A-entropy,” Mat. Zametki,5, No. 3, 327–334 (1969).Google Scholar
  137. 137.
    B. S. Pitskel', “A metric compatible with the topology, invariant with respect to a given homeomorphism of the space of sequences and a property of topological invariants of entropy type,” Usp. Mat. Nauk,24, No. 5, 222 (1969).Google Scholar
  138. 138.
    B. S. Pitskel', “Some remarks on the individual ergodic theorem of information theory,” Mat. Zametki,9, 93–103 (1971).Google Scholar
  139. 139.
    B. S. Pitskel', “On informationally coming amenable groups,” Dokl. Akad. Nauk SSSR,223, No. 5, 1067–1070 (1975).Google Scholar
  140. 140.
    B. S. Pitskel' and A. M. Stepin, “On the property of uniform distribution of entropy of commutative groups with metric automorphisms,” Dokl. Akad. Nauk SSSR,198, No. 5, 1021–1024 (1971).Google Scholar
  141. 141.
    M. E. Ratner, “On invariant measures fory-flows on three-dimensional manifolds,” Dokl. Akad. Nauk SSSR,186, No. 2 (1969).Google Scholar
  142. 142.
    M. E. Ratner, “The central limit theorem fory-flows on three-dimensional manifolds,” Dokl. Akad. Nauk SSSR,186, No. 3, 519–521 (1969).Google Scholar
  143. 143.
    M. E. Ratner, “Markovian partitions fory-flows on three-dimensional manifolds,” Mat. Zametki,6, No. 6, 693–704 (1969).Google Scholar
  144. 144.
    V. A. Rokhlin, “New progress in the theory of transformations with invariant measure,” Usp. Mat. Nauk,15, No. 4, 3–26 (1960).Google Scholar
  145. 145.
    V. A. Rokhlin, “Lectures on the entropy theory of transformations with invariant measure,” Usp. Mat. Nauk,12, No. 5, 3–56 (1967).Google Scholar
  146. 146.
    B. A. Rubshtein, “On decreasing sequences of measurable partitions,” Dokl. Akad. Nauk SSSR,205, No. 3, 526–529 (1972).Google Scholar
  147. 147.
    B. A. Rubshtein, “On a class of sequences of measurable partitions and endomorphisms of Lebesgue spaces,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 99–105 (1973).Google Scholar
  148. 148.
    B. A. Rubshtein, “On sequences of measurable partitions generated by endomorphisms of Lebesgue spaces,” Usp. Mat. Nauk,28, No. 1, 247–248 (1973).Google Scholar
  149. 149.
    B. A. Rubshtein, “On generating partitions for Markovian endomorphisms,” Funktsional'. Analiz Ego Prilozhen.,8, No. 1, 90–91 (1974).Google Scholar
  150. 150.
    D. Ruelle, Statistical Mechanics. Rigorous Results, W. A. Benjamin, Reading, Mass. (1974).Google Scholar
  151. 151.
    E. A. Sataev, “On the number of invariant measures for flows on orientable surfaces,” Izv. Akad. Nauk SSSR,39, No. 4, 860–878 (1975).Google Scholar
  152. 152.
    E. A. Sidorov, “The existence of topologically indecomposable transformations of n-dimensional domains which are not ergodic,” Mat. Zametki,3, No. 4, 427–430 (1968).Google Scholar
  153. 153.
    E. A. Sidorov, “Smooth topologically transitive dynamic systems,” Mat. Zametki,4, No. 6, 151–759 (1968).Google Scholar
  154. 154.
    E. A. Sidorov, “A connection between topological transitivity and ergodicity,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 77–82 (1969).Google Scholar
  155. 155.
    E. A. Sidorov, “Topologically transitive cylindrical cascades,” Mat. Zametki,14, No. 3, 441–452 (1973).Google Scholar
  156. 156.
    E. A. Sidorov, “On a class of minimal sets,” Usp. Mat. Nauk,28, No. 5, 225–226 (1973).Google Scholar
  157. 157.
    Ya. G. Sinai, “On weak isomorphism of transformations with invariant measures,” Mat. Sb.,63, No. 1, 23–42 (1964).Google Scholar
  158. 158.
    Ya. G. Sinai, “Classical dynamical systems with countably multiple Lebesgue spectrum. II,” Izv. Akad. Nauk SSSR, Ser. Mat.,30, No. 1, 15–68 (1960).Google Scholar
  159. 159.
    Ya. G. Sinai, “Markovian partitions andy-diffeomorphisms,” Funktsional'. Analiz Ego Prilozhen.,2, No. 1, 64–89 (1968).Google Scholar
  160. 160.
    Ya. G. Sinai, “The construction of Markovian partitions,” Funktsional'. Analiz Ego Prilozhen.,2, No. 3, 70–80 (1968).Google Scholar
  161. 161.
    Ya. G. Sinai, “Dynamical systems with elastic reflection. Ergodic properties of dissipative billiards,” Usp. Mat. Nauk,25, No. 2, 141–192 (1970).Google Scholar
  162. 162.
    Ya. G. Sinai, “Ergodic properties of a gas in one-dimensional hard globules with an infinite number of degrees of freedom,” Funktsional'. Analiz Ego Prilozhen.,6, No. 1, 41–50 (1972).Google Scholar
  163. 163.
    Ya. G. Sinai, “The construction of dynamics in one-dimensional systems of statistical mechanics,” Teor. Mat. Fiz.,11, No. 2, 248–258 (1972).Google Scholar
  164. 164.
    Ya. G. Sinai, “Gibbsian measures in ergodic theory,” Usp. Mat. Nauk,27, No. 4, 21–64 (1972).Google Scholar
  165. 165.
    Ya. G. Sinai, “The construction of cluster dynamics for dynamical systems of statistical mechanics,” in: Materials of the All-Union School in Dilizhan [in Russian], Erevan (1974), pp. 160–172.Google Scholar
  166. 166.
    Ya. G. Sinai, “The construction of cluster dynamics for dynamical systems of statistical mechanics,” Vestn. MGU, Ser. Mat., No. 1, 152–158 (1974).Google Scholar
  167. 167.
    Ya. G. Sinai, Introduction to Ergodic Theory [in Russian], Erevan, Univ., Erevan (1973).Google Scholar
  168. 168.
    Ya. G. Sinai, “The asymptotic number of closed geodesics on compact manifolds of negative curvature,” Izv. Akad. Nauk SSSR, Ser. Mat.,30, No. 6, 1275–1296 (1966).Google Scholar
  169. 169.
    Ya. G. Sinai and Yu. M. Sukhov, “On an existence theorem for solutions of Bogolyubov chains of equations,” Teor. Mat. Fiz.,19, No. 3, 344–363 (1974).Google Scholar
  170. 170.
    S. Smale, “Structural stability of a differentiable homeomorphism with an infinite number of periodic points,” in: Transactions of the International Symposium on Nonlinear Oscillations, 1961 [in Russian], Iz-vo Akad. Nauk SSSR, Kiev (1963), pp. 365–366.Google Scholar
  171. 171.
    A. M. Stepin, “Flows on solvable manifolds,” Usp. Mat. Nauk,24, No. 5, 241–242 (1969).Google Scholar
  172. 172.
    A. M. Stepin, “On the cohomology of a gorup of automorphisms of a Lebesgue space,” Funktsional'. Analiz Ego Prilozhen., No. 2, 91–92 (1971).Google Scholar
  173. 173.
    A. M. Stepin, “On an entropy invariant of decreasing sequences of measurable partitions,” Funktsional.' Analiz Ego Prilozhen.,5, No. 3, 80–84 (1971).Google Scholar
  174. 174.
    A. M. Stepin, “Spectra of dynamical systems,” in: International Congress of Mathematicians in Nice, 1970 [Russian translation], Nauka, Moscow (1972), pp. 307–312.Google Scholar
  175. 175.
    A. M. Stepin, “On a connection between approximative and spectral properties of metric automorphisms,” Mat. Zametki,13, No. 3, 403–409 (1973).Google Scholar
  176. 176.
    A. M. Stepin, “Dynamical systems on homogeneous spaces of semisimple Lie groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,37, No. 5, 1091–1107 (1973).Google Scholar
  177. 177.
    A. M. Stepin, “Bernoulli shift on groups,” Dokl. Akad. Nauk SSSR,223, No. 2, 300–302 (1975).Google Scholar
  178. 178.
    A. A. Tempel'man, “Ergodic theorems for general dynamical systems,” Dokl. Akad. Nauk SSSR,176, No. 4, 790–793 (1967).Google Scholar
  179. 179.
    A. A. Tempel'man, “Ergodic theorems for general dynamical systems,” Tr. Mosk. Mat. O-va,26, 95–132 (1972).Google Scholar
  180. 180.
    A. A. Tempel'man, “On the ergodicity of Gaussian homogeneous stochastic fields on homogeneous spaces,” Teor. Veroyatn. Ee Primen.,18, No. 1, 177–180 (1973).Google Scholar
  181. 181.
    V. G. Sharapov, “On discrete partitions and strict endomorphisms of Lebesgue spaces,” Izv. Akad. Nauk Uzb. SSR, Ser. Fiz.-Mat. Nauk, No. 5, 30–37 (1971).Google Scholar
  182. 182.
    V. G. Sharapov, “On Markovian endomorphisms of Lebesgue spaces,” Funktsional'. Analiz Ego Prilozhen.,5, No. 3, 91–95 (1971).Google Scholar
  183. 183.
    A. I. Shnirel'man, “Statistical properties of eigenfunctions,” in: Materials of the All-Union Mathematical School in Dilizhan [in Russian], Erevan (1974), pp. 267–278.Google Scholar
  184. 184.
    Yu. Shreider, “Banach functionals and ergodic theorems,” Mat. Zametki,2, No. 4, 385–394 (1967).Google Scholar
  185. 185.
    M. S. Shtil'man, “On the number of invariant measures with maximal entropy for shifts in sequence spaces,” Mat. Zametki,9, No. 3, 291–302 (1971).Google Scholar
  186. 186.
    S. A. Yuzvinskii, “Nonergodicity of automorphisms of connected locally compact groups,” Uch. Zap. Leningr. Gos. Pedagog. Inst. Im. Gertsena,387, 257–262 (1968).Google Scholar
  187. 187.
    S. A. Yuzvinskii, “Metric properties of automorphisms on homogeneous spaces of compact groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,35, No. 1, 78–82 (1971).Google Scholar
  188. 188.
    S. A. Yuzvinskii, “On the entropy of sequences of partitions generated by endormorphisms,” Funktsional'. Analiz Ego Prilozhen.,6, No. 3, 87–88 (1972).Google Scholar
  189. 189.
    S. A. Yuzvinskii, “Discrimination of K-automorphisms by scale,” Funktsional'. Analiz. Ego Prilozhen.,7, No. 4, 70–75 (1973).Google Scholar
  190. 190.
    M. I. Yadrenko, “ERgodic theorems for isotropic stochastic fields,” Teor. Veroyatn. Mat. Statist. Mezhved. Nauch. Sb., No. 1, 249–251 (1970).Google Scholar
  191. 191.
    R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin, New York-Amsterdam (1967).Google Scholar
  192. 192.
    J. Aczel and A. M. Ostrowski, “On the characterization of Shannon's entropy by Shannon's inequality,” J. Austral. Math. Soc.,16, No. 3, 368–374 (1973).Google Scholar
  193. 193.
    R. L. Adler, “F-expansions revisited,” Lecture Notes Math.,318, 1–5 (1973).Google Scholar
  194. 194.
    R. L. Adler, A. Konheim, and McAndrew, “Topological entropy,” Trans. Am. Math. Soc.,114, No. 2, 309–319 (1965).Google Scholar
  195. 195.
    R. L. Adler and P. C. Shields, “Skew products of Bernoulli shifts with rotations,” Isr. J. Math.,12, No. 3, 215–222 (1972).Google Scholar
  196. 196.
    R. L. Adler, P. C. Shields, and M. Smorodinsky, “Irreducible Markov shifts,” Ann. Math. Stat.,43, No. 3, 1027–1029 (1972).Google Scholar
  197. 197.
    R. L. Adler and B. Weiss, “Entropy a complete metric invariant for automorphisms of the torus,” Proc. Nat. Acad. Sci. USA,57, No. 6, 1573–1576 (1967).Google Scholar
  198. 198.
    R. L. Adler and B. Weiss, “The ergodic infinite measure preserving transformation of Boole,” Isr. J. Math.,16, No. 3, 263–278 (1973)(1974).Google Scholar
  199. 199.
    M. Aiserman, S. Goldstein, and J. L. Leibowitz, “Ergodic properties of an infinite one-dimensional hard rod system,” Comm. Math. Phys.,39, No. 4, 289–302 (1975).Google Scholar
  200. 200.
    M. A. Akcoglu and J. R. Baxter, “Roots of ergodic transformations,” J. Math. and Mech.,19, No. 11, 991–1003 (1970).Google Scholar
  201. 201.
    M. A. Akcoglu and R. V. Chacon, “A local ratio theorem,” Can. J. Math.,22, No. 3, 545–552 (1970).Google Scholar
  202. 202.
    M. A. Akcoglu and J. R. Baxter, “Approximation of commuting transformations,” Proc. Am. Math. Soc.,32, No. 1, 111–119 (1972).Google Scholar
  203. 203.
    M. A. Akcoglu, J. R. Baxter, and T. Schwartzbauer, “Commuting transformations and mixing,” Proc. Am. Math. Soc.,24, No. 3, 637–642 (1970).Google Scholar
  204. 204.
    M. Akcoglu and J. Cunsolo, “An ergodic theorem for semigroups,” Proc. Am. Math. Soc.,24, No. 1, 161–170 (1970).Google Scholar
  205. 205.
    M. A. Akcoglu and J. Cunsolo, “An identification of ratio ergodic limits for semigroups,” Z. Wahrscheinlichkeitstheorie und Verw. Geb.,15, No. 3, 219–229 (1970).Google Scholar
  206. 206.
    M. A. Akcoglu, J. P. Huneke, and H. A. Rost, “A counterexample to the Blum-Hanson theorem in general spaces,” Pacific J. Math.,50, No. 2, 305–308 (1974).Google Scholar
  207. 207.
    M. A. Akcoglu and R. W. Sharpe, “Ergodic theory and boundaries,” Trans. Am. Math. Soc.,132, No. 2, 447–460 (1968).Google Scholar
  208. 208.
    M. A. Akcoglu and L. Sucheston, “On the dominated ergodic theorem in L2-space,” Proc. Am. Math. Soc.,43, No. 2, (1974).Google Scholar
  209. 209.
    N. Aoki, “On generalized commuting properties of metric automorphisms. I,” Proc. Japan Acad.,44, No. 6, 467–471 (1968).Google Scholar
  210. 210.
    N. Aoki, “On generalized commuting properties of metric automorphisms. II,” Proc. Japan Acad.,45, No. 1, 17–19 (1969).Google Scholar
  211. 211.
    N. Aoki, “On zero entropy and quasi-discrete spectrum for automorphisms,” Proc. Japan Acad.,45, No. 1, 20–24 (1969).Google Scholar
  212. 212.
    N. Aoki, “On two invariant σ-algebras for an affine transformation,” Mich. Math. J.,17, No. 4, 397–400 (1970).Google Scholar
  213. 213.
    N. Aoki, “On generalized commuting order of automorphisms with quasi-discrete spectrum,” Trans. Am. Math. Soc.,152, No. 1, 79–97 (1970).Google Scholar
  214. 214.
    N. Aoki, “Topological entropy of distal affine transformations on compact Abelian groups,” J. Math. Soc. Jap.,23, No. 1, 11–17 (1971).Google Scholar
  215. 215.
    N. Aoki and Yu. Ito, “Ergodic properties of affine transformations,” J. Math. Anal. and Appl.,38, No. 2, 447–453 (1972).Google Scholar
  216. 216.
    H. Araki and E. Woods, “A classification of factors,” Publ. RIMS Kyoto Univ., Ser. A,4, 51–130 (1968).Google Scholar
  217. 217.
    F. Aribund, “Un théorème ergodique pour les espaces L1,” J. Funct. Anal.,5, No. 3, 395–411 (1970).Google Scholar
  218. 218.
    F. Aribund, “Sur le théorème de Akcoglu-Birkhoff,” Semin. Choquet. Fac. Sci. Paris,10, No. 1, 15/01–15/19 (1970–71).Google Scholar
  219. 219.
    L. K. Arnold, On σ-finite Invariant Measures, Doctoral Dissertation Brown University, 1966. Dissert. Abstrs.B28, No. 1 (1967).Google Scholar
  220. 220.
    L. K. Arnold, “On σ-finite invariant measures,” Z. Wahrscheinlichkeitstheorie und Verw. Geb.,9, No. 2, 85–97 (1968).Google Scholar
  221. 221.
    V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, Benjamin, New York (1968).Google Scholar
  222. 222.
    W. B. Arveson and K. B. Josephson, “Operator algebras and measure preserving automorphisms. II,” J. Funct. Anal.,4, No. 1, 100–134 (1969).Google Scholar
  223. 223.
    R. J. Aumann, “Random measure preserving transformations,” in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probabil., 1965–1966, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 321–326.Google Scholar
  224. 224.
    L. Auslander, “Modifications of solvmanifolds and G-induced flow,” Am. J. Math.,88, No. 3, 615–625 (1966).Google Scholar
  225. 225.
    L. Auslander, “Ergodic automorphisms,” Am. Math. Mon.,77, No. 1, 1–19 (1970).Google Scholar
  226. 226.
    L. Auslander, “An exposition of the structure of solvmanifolds. Part I. Algebraic theory,” Bull. Am. Math. Soc.,79, No. 2, 227–261 (1973).Google Scholar
  227. 227.
    L. Auslander, “An exposition of the structure of solvmanifolds. Part II. G-induced flows,” Bull. Am. Math. Soc.,79, No. 2, 262–285 (1973).Google Scholar
  228. 228.
    L. Auslander, “Ergodic G-induced flows on compact solvmanifolds,” Lect. Notes Math.,318, 12–22 (1973).Google Scholar
  229. 229.
    D. G. Austin, “A note on the Birkhoff ergodic theorem,” Ann. Math. Statist.,38, No. 3, 922–923 (1967).Google Scholar
  230. 230.
    A. Avez, “Propriétés ergodiques des endomorphismes dilatants des variétés compactes,” C. R. Acad. Sci.,266, No. 12, A610-A612 (1968).Google Scholar
  231. 231.
    A. Avez, “Propriétés ergodiques des groupes d'isometries,” C. R. Acad. Sci.,265, No. 21, A679-A682 (1967).Google Scholar
  232. 232.
    A. Avez, “Spectre discrete des systèmes ergodiques,” C.R. Acad. Sci.,264, No. 1, A49-A52 (1967).Google Scholar
  233. 233.
    A. Avez, “Caractérisation spectrale des endomorphismes dilatants des variétés,” Bull. cl. Sci. Acad. Roy. Belg.,54, No. 11, 1424–1433 (1968).Google Scholar
  234. 234.
    A. Avez, “Une généralization du théorème d'equipartition de Weyl,” Bull cl. Sci. Acad. Roy. Belg.,53, No. 9, 1000–1006 (1967).Google Scholar
  235. 235.
    A. Avez, “Topologie des difféomorphismes d'Anosov qui possedant un invariant integral,” C. R. Acad. Sci.,265, No. 17, A508-A510 (1967).Google Scholar
  236. 236.
    A. Avez, “Limite de quotient pour des marches aléatoires des groupes,” C.R. Acad. Sci.,276, No. 4, A317-A320 (1973).Google Scholar
  237. 237.
    R. Azencott, “Difféomorphismes d'Anosov et schémas de Bernoulli,” C.R. Acad. Sci.,270, No. 17, A1105-A1107 (1970).Google Scholar
  238. 238.
    Y. Baba, “Entropy and Hausdorff dimension of a sequence of coordinate functions in base r expansion,” Lect. Notes in Math.,330, 1–6 (1973).Google Scholar
  239. 239.
    J. R. Baxter, “A class of ergodic transformations having simple spectrum,” Proc. Am. Math. Soc.,27, No. 2, 275–279 (1971).Google Scholar
  240. 240.
    J.-M. Belley, “Spectral measures and flows,” Indiana Univ. Math. J.,22, No. 3, 293–300 (1972).Google Scholar
  241. 241.
    J.-M. Belley, “Spectral properties for invertible measure preserving transformations,” Can. J. Math.,25, No. 4, 806–811 (1973).Google Scholar
  242. 242.
    P. Benvenuti, “Sul problema ergodico ad una singola funzione,” Atti Accad Naz. Lincei Rend. C1. Sci. Fiz., Mat. e Natur.,42, No. 3, 368–372 (1967).Google Scholar
  243. 243.
    K. R. Berg, On the Conjugary Problem for K-systems, Doctoral Diss. Univ. Minn., 1967, Dissert. Abstrs.,B28, No. 8, 3368 (1968).Google Scholar
  244. 244.
    K. R. Berg, “Convolution of invariant measures, maximal entropy,” Math. Syst. Theory,3, No. 2, 146–150 (1969).Google Scholar
  245. 245.
    K. R. Berg, “Quasi-disjointness in ergodic theory,” Trans. Am. Math. Soc.,162, 7187 (1971).Google Scholar
  246. 246.
    K. R. Berg, “Quasi-disjointness, products and inverse limits,” Math. Syst. Theory,6, No. 2, 123–128 (1972).Google Scholar
  247. 247.
    R. N. Berk, A General Ergodic Theorem with Weighted Averages on Continuous Flows, Doct. Diss. Univ. Minn., 1965, Dissert. Abstrs,26, No. 9, 5451 (1966).Google Scholar
  248. 248.
    R. N. Berk, “Ergodic theory with recurrent weights,” Ann. Math. Stat.,39, No. 4, 1107–1114 (1968).Google Scholar
  249. 249.
    T. Bewley, “Sur l'application de théorèmes ergodiques aux groupes libres de transformations: un contre exemple,” C. R. Acad. Sci.,270, No. 23, A1553-A1534 (1970).Google Scholar
  250. 250.
    T. Bewley, “Extensions of the Birkhoff and von Neumann ergodic theorems to semigroup actions,” Ann. Inst. H. Poincaré,B7, No. 4, 283–291 (1971).Google Scholar
  251. 251.
    J. R. Blum, “A note on mixing transformations,” Isr. J. Math.,9, No. 4, 464–465 (1972).Google Scholar
  252. 252.
    J. R. Blum, H. D. Brunk, and D. C. Hanson, “Roots of the one-sided N-shift,” in: Proc. Fifth Berkeley Symp. Math. Statist. and Probabil., 1965–1966, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 327–333.Google Scholar
  253. 253.
    J. R. Blum and B. Eisenberg, “Generalized summing sequences and the mean ergodic theorem,” Proc. Am. Math. Soc.,42, No. 2, 423–429 (1974).Google Scholar
  254. 254.
    J. R. Blum, B. Eisenberg, and L.-S. Hahn, “Ergodic theory and the measures of sets in the Bohr group,” Acata Sci. Math.,34, 17–24 (1973).Google Scholar
  255. 255.
    J. R. Blum and N. Friedman, “On invariant measures for clases of transformations,” Z. Wahrscheinlichkeitstheorie und Verw. Geb.,8, No. 4, 301–305 (1967).Google Scholar
  256. 256.
    J. R. Blum and V. J. Mizel, “A generalized Weyl equidistribution theorem for operators with applications,” Trans. Am. Math. Soc.,165, March, 291–307 (1972).Google Scholar
  257. 257.
    R. Bowen, “Markov partitions for axiom A diffeomorphisms,” Am. J. Math.,92, No. 3, 725–747 (1970).Google Scholar
  258. 258.
    R. Bowen, “Markov partitions and minimal sets for axiom A diffeomorphisms,” Am. J. Math.,92, No. 4, 907–918 (1970).Google Scholar
  259. 259.
    R. Bowen, “Periodic points and measures for axiom A diffeomorphisms,” Trans. Am. Math. Soc.,154, 377–397 (1971).Google Scholar
  260. 260.
    R. Bowen, “Entropy for group endomorphisms and homogeneous spaces,” Trans. Am. Math. Soc.,153, Jan., 401–414 (1971).Google Scholar
  261. 261.
    R. Bowen, “Erratum to ‘Entropy for group endomorphisms and homogeneous spaces’,” Trans. Am. Math. Soc.,181, 509–510 (1973).Google Scholar
  262. 262.
    R. Bowen, “Entropy-expansive maps,” Trans. Am. Math. Soc.,164, 323–331 (1972).Google Scholar
  263. 263.
    R. Bowen, “Periodic orbits for hyperbolic flows,” Am. J. Math.,94, No. 1, 1–30 (1972).Google Scholar
  264. 264.
    R. Bowen, “The equidistribution of closed geodesies,” Am. J. Math.,94, No. 2, 413–423 (1972).Google Scholar
  265. 265.
    R. Bowen, “One-dimensional hyperbolic sets for flows,” J. Diff. Equat.,12, No. 1, 173–179 (1972).Google Scholar
  266. 266.
    R. Bowen, “Some systems with unique equilibrium states,” Math. System Theory,8, No. 3, 193–202 (1975).Google Scholar
  267. 267.
    R. Bowen, “Symbolic dynamics for hyperbolic systems,” Lect. Notes Math.,318, 51–58 (1973).Google Scholar
  268. 268.
    R. Bowen, “Symbolic dynamics for hyperbolic flows,” Am. J. Math.,95, No. 2, 429–460 (1973).Google Scholar
  269. 269.
    R. Bowen, “Equilibrium states and the ergodic theory of Anosov diffeomorphisms,” Preprint (1974).Google Scholar
  270. 270.
    R. Bowen and D. Ruelle, “Ergodic theory for axiom A flow,” Preprint (1974).Google Scholar
  271. 271.
    R. Bowen and P. Walters, “Expansive one-parameter flows,” J. Diff. Equat.,12, No. 1, 180–193 (1972).Google Scholar
  272. 272.
    J. Brezin, R. Ellis, and L. Shapiro, “Recognizing G-induced flows,” Isr. J. Math.,17, No. 1, 56–65 (1974).Google Scholar
  273. 273.
    J. R. Brown, “A universal model for dynamical systems with quasidiscrete spectrum,” Bull. Am. Math. Soc.,75, No. 5, 1028–1030 (1969).Google Scholar
  274. 274.
    J. R. Brown, “Inverse limits, entropy and weak isomorphisms for discrete dynamical systems,” Trans. Am. Math. Soc., 55–66 (1972).Google Scholar
  275. 275.
    J. R. Brown, “A model for ergodic automorphisms on groups,” Math. Syst. Theory,6, No. 3, 235–240 (1972).Google Scholar
  276. 276.
    A. Brunel, Sur Quelques Problems de la Theorie Ergodique Ponctuelle, These Doct. Sci. Math. Fac. Sci. Univ. Paris (1966).Google Scholar
  277. 277.
    A. Brunel, “New conditions for existence of invariant measures in ergodic theory,” Lect. Notes Math.,160, 7–17 (1970).Google Scholar
  278. 278.
    A. Brunel, “Théorème ergodique ponctuel pour un semi-groupe commutatif finiment engendré de contractions de L1,” Ann. Inst. H. Poincaré,B9, No. 4, 327–343 (1973) (1974).Google Scholar
  279. 279.
    A. Brunel and M. Keane, “Ergodic theorems for operator sequences,” Z. Wahrscheinlichkeitstheorie und Verw. Geb.,12, No. 3, 231–240 (1969).Google Scholar
  280. 280.
    A. P. Calderón, “Ergodic theory and translation-invariant operators,” Proc. Nat. Acad. Sci. USA,59, No. 2, 349–353 (1968).Google Scholar
  281. 281.
    R. V. Chacon, “Change of velocity in flows,” J. Math. and Mech.,16, No. 5, 417–431 (1966).Google Scholar
  282. 282.
    R. V. Chacon, “Transformations having continuous spectrum,” J. Math. and Mech.,16, No. 5, 399–415 (1966).Google Scholar
  283. 283.
    R. V. Chacon, “A geometric construction of measure preserving transformations,” in: Proc. Fifth Berkeley Symposium on Math. Statist. and Probabil., 1965–66, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 361–374.Google Scholar
  284. 284.
    R. V. Chacon, “Approximation of transformations with continuous spectrum,” Pacific J. Math.,31, No. 2, 293–302 (1969).Google Scholar
  285. 285.
    R. V. Chacon, “Approximation and spectra multiplicity,” Lect. Notes Math.,160, 18–27 (1970).Google Scholar
  286. 286.
    R. V. Chacon, “Representation of measure preserving transformations,” in: Actes Congr. Int. Math., 1970, Vol. 2, Paris (1971), pp. 559–564.Google Scholar
  287. 287.
    R. V. Chacon and S. A. McGrath, “Estimates of positive contraction,” Pacific J. Math.,30, No. 3, 609–620 (1969).Google Scholar
  288. 288.
    R. V. Chacon and J. Olsen, “Dominated estimates of positive contractions,” Proc. Am. Math. Soc.,20, No. 1, 266–271 (1969).Google Scholar
  289. 289.
    R. V. Chacon and T. Schwartzbauer, “Commuting point transformations,” Z. Wahrscheinlichkeitstheorie und Verw. Geb.,11, No. 4, 277–287 (1969).Google Scholar
  290. 290.
    R. V. Chacon and T. Schwartzbauer, “Approximation and invariance,” Lect. Notes Math.,160, 28–36 (1970).Google Scholar
  291. 291.
    J. Chatard, “Applications des propriétés de moyenne d'un groupe localement compact á la théorie ergodique,” Ann. Inst. H. Poincare,B6, No. 4, 307–326 (1970) (1971).Google Scholar
  292. 292.
    J. Chatard, “Sur une généralisation du théoreme de Birkhoff,” C.R. Acad. Sci.,275, No. 21, A1135-A1138 (1972).Google Scholar
  293. 293.
    C. K. Cheong, “Ergodic and ratio limit theorems for α-recurrent and semi-Markov processes,” Z. Wahrscheinlichkeitstheorie und Verw. Geb.,9, No. 4, 270–286 (1968).Google Scholar
  294. 294.
    G. Y. H. Chi and N. Dinculeanu, “Projective limits of measure preserving transformations on probability spaces,” J. Multivar. Anal.,2, No. 4, 404–414 (1972).Google Scholar
  295. 295.
    J. R. Choski, “Automorphisms of Baire measures on generalized cubes,” Z. Wahrscheinlichkeitstheorie und Verw. Geb.,22, No. 3, 195–204 (1972).Google Scholar
  296. 296.
    J. R. Choksi, “Automorphisms of Baire measures on generalized cubes. II,” Z. Wahrscheinlichkeitstheorie und Verw. Geb.,23, No. 2, 97–102 (1972).Google Scholar
  297. 297.
    Ching Chou, “Minimal sets and ergodic measures for βN\N,” Ill. J. Math.,13, No. 4, 777–788 (1969).Google Scholar
  298. 298.
    R. R. Coiffman and G. Weiss, “Maximal functions andHp spaces defined by ergodic transformations,” Proc. Nat. Acad. Sci. USA,70, No. 6, 1761–1763 (1973).Google Scholar
  299. 299.
    C. M. Colebrook and J. H. B. Kemperman, “On nonnormal numbers,” Proc. Koninkl. Nederl. Akad. Wet.,A71, No. 1, 11 (1968); Indag. Math.,30, No. 1, 1–11 (1968).Google Scholar
  300. 300.
    J. P. Conze, “Extensions de systemes dynamiques par des endomorphismes de groupes compacts,” C.R. Acad. Sci., Paris,268, 1369–1372 (1969).Google Scholar
  301. 301.
    J. P. Conze, “Entropie des flots des transformations affines sur les espaces homogenes compacts,” C.R. Acad. Sci.,270, No. 8, A547-A548 (1970).Google Scholar
  302. 302.
    J. P. Conze, “Entropie d'un groupe Abelien de transformations,” Z. Wahrscheinlichkeitstheorie und Verw. Geb.,25, No. 1, 11–30 (1972).Google Scholar
  303. 303.
    J. P. Conze, “Extensions de systèmes dynamiques par des endomorphismes de groupes compacts,” Ann. Inst. H. Poincaré,B8, No. 1, 33–66 (1972).Google Scholar
  304. 304.
    J. P. Conze, “Convergence des moyennes ergodiques pour des sous-suites,” Bull. Soc. Math. France, Mem. No. 35, 7–15 (1973).Google Scholar
  305. 305.
    J. P. Conze, “Equations fonctionelles et systèmes induits en théorie ergodique,” Z. Wahrscheinlichkeitstheorie und Verw. Geb.,23, No. 1, 75–82 (1972).Google Scholar
  306. 306.
    E. M. Coven and M. S. Keane, “The structure of substitution minimal sets,” Trans. Am. Math. Soc.,162, 89–102 (1971).Google Scholar
  307. 307.
    I. Cuculescu and C. Foias, “An individual ergodic theorem for positive operators,” Rev. Roumaine Math. Pure et Appl.,11, No. 5, 581–594 (1966).Google Scholar
  308. 308.
    Dang-Ngoc-Nghiem, “On the classification of dynamical systems,” Ann. Inst. H. Poincarè,B9, No. 4, 397–425 (1973) (1974).Google Scholar
  309. 309.
    Dang-Ngoc-Nghiem, “Partie finie d'un système dynamique et deux nouvelles demonstrations du théorème de Hopf,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,27, No. 2, 131–140 (1973).Google Scholar
  310. 310.
    M. Denker, “Une demonstration nouvelle du théorème de Goodwyn,” C.R. Acad. Sci., No. 15, A735-A738 (1972).Google Scholar
  311. 311.
    M. Denker, “On strict ergodicity,” Math. Z.,134, 231–253 (1973).Google Scholar
  312. 312.
    M. Denker, “Finite generators for ergodic, measure-preserving transformations,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,29, No. 1, 45–55 (1974).Google Scholar
  313. 313.
    M. Denker, Untersuchungen über eine Spezielle Klasse von Zerlegungen eines Kompakten Metrischen Raumes, Diss., Doktorgrad. Naturwiss. Fak. Friedrich-Alexander-Univ. Er-lange-Nürberg (1972).Google Scholar
  314. 314.
    M. Denker and E. Eberlein, “Ergodic flows are strictly ergodic,” Advances in Math.,13, 437–473 (1974).Google Scholar
  315. 315.
    Y. Derriennic and M. Lin, “On invariant measures and ergodic theorems for positive operators,” J. Funct. Anal.,13, No. 3, 252–267 (1973).Google Scholar
  316. 316.
    N. Dinculeany and C. Foias, “Algebraic models for measure preserving transformations,” Trans. Am. Math. Soc.,184, No. 2, 215–237 (1968).Google Scholar
  317. 317.
    W. G. Dotson, Jr., “An application of ergodic theory to the solution of linear functional equations in Banach spaces,” Bull. Am. Math. Soc.,75, No. 2, 347–352 (1969).Google Scholar
  318. 318.
    J. K. Dugdale, “Kolmogorov automorphisms in σ-finite measure spaces,” Publs. Math.,14, No. 1–4, 79–81 (1967).Google Scholar
  319. 319.
    E. Eberlein, “Toeplitzfolgen und Gruppentranslationen,” Archiv d. Math.,22, 291–301 (1971).Google Scholar
  320. 320.
    E. Eberlein, Einbettung von Strömungen in Funktionenräume durch Errenger von Endlichen Typus, Diss. Doctorgrad. Naturwiss. Fak. Friedrich-Alexander-Univ. Erlangen-Nürnberg (1972).Google Scholar
  321. 321.
    E. Eberlein, “Einbettung von Strömungen in Funktionenräume durch Errenger von endlichen Typus,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,27, No. 4, 227–291 (1973).Google Scholar
  322. 322.
    P. Eberlein, “Geodesic flow in certain manifolds without conjugate points,” Trans. Am. Math. Soc.,167, 151–170 (1972).Google Scholar
  323. 323.
    P. Eberlein, “When is a geodesic flow of Anosov type I,” J. Different. Geom.,8, No. 3, 437–463 (1973).Google Scholar
  324. 324.
    P. Eberlein, “When is a geodesic flow of Anosov type II,” J. Different. Geom.,8, No. 4, 565–577 (1973).Google Scholar
  325. 325.
    D. A. Edwards, “A maximal ergodic theorem for Abel means of continuous-parameter operator semigroup,” J. Funct. Anal.,7, No. 1, 61–70 (1971).Google Scholar
  326. 326.
    J. Egawa, “Invariant positive measures for flows in the plane,” Funkc. Ekvacioj.,15, No. 1, 23–38 (1972).Google Scholar
  327. 327.
    J. W. England and N. F. Martin, “On weak mixing metric automorphisms,” Bull. Am. Math. Soc.,74, No. 3, 505–507 (1968).Google Scholar
  328. 328.
    J. W. England and N. F. Martin, “On the entropy of isometries of compact metric spaces,” Proc. Am. Math. Soc.,19, No. 4, 799–800 (1968).Google Scholar
  329. 329.
    D. Epstein and M. Shub, “Expanding endomorphisms of flat manifolds,” Topology,7, No. 2, 139–141 (1968).Google Scholar
  330. 330.
    T. Erber, B. Schweizer, and A. Sklar, “Mixing transformations on metric spaces,” Communs. Math. Phys.,29, No. 4, 311–317 (1973).Google Scholar
  331. 331.
    M. Falkowitz, “On finite invariant measures for Markov operators,” Proc. Am. Math. Soc.,38, No. 3, 553–557 (1973).Google Scholar
  332. 332.
    N. A. Fava, “Weak type inequalities for product operators,” Stud. Math.,42, No. 3, 271–288 (1972).Google Scholar
  333. 333.
    J. Feldman and M. Smorodinsky, “Bernoulli flows with infinite entropy,” Ann. Math. Stat.,42, No. 1, 351–352 (1971).Google Scholar
  334. 334.
    D. Fife, “Spectral decomposition of ergodic flows on LP,” Bull. Am. Math. Soc.,76, No. 1, 138–141 (1970).Google Scholar
  335. 335.
    R. Fischer, “Ergodische Eigenschaften komplexer Ziffernentwicklungen,” Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl.,180, No. 1–3, 49–68 (1972).Google Scholar
  336. 336.
    R. Fischer, “Ergodische Theorie von Ziffernentwicklungen in Wahrscheinlichkeitsräumen,” Math. Z.,128, No. 3, 217–230 (1972).Google Scholar
  337. 337.
    M. Flato, B. Nagel and D. Stenheimer, “Flots ergodiques et measures complexes,” C.R. Acad. Sci.,272, No. 3, A892-A895 (1971).Google Scholar
  338. 338.
    D. Florea, “Sur un théorème de V. M. Alexeev,” Rev. Roumaine Math. Pures et Appl.,14, No. 7, 987–990 (1969).Google Scholar
  339. 339.
    E. G. Flytzanis, “Ergodicity of the Cartesian product,” Trans. Am. Math. Soc.,186, Dec., 171–176 (1973).Google Scholar
  340. 340.
    S. R. Foguel, “The ergodic theory of positive operators on continuous functions,” Ann. Scuola Norm. Super. Pisa. Sci. Fis. e Mat.,27, No. 1, 19–51 (1973).Google Scholar
  341. 341.
    C. Foias, “Projective tensor products in ergodic theory,” Rev. Roumaine Math. Pures et Appl.,12, No. 9, 1221–1226 (1967).Google Scholar
  342. 342.
    H. Föllmer, “On entropy and information gain in random fields,” Z. Wahrscheinlichkeitstheorie und verw. Geb.,26, No. 3, 207–217 (1973).Google Scholar
  343. 343.
    H. Fong and L. Sucheston, “On a mixing property of operators in Lp spaces,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,28, No. 2, 165–171 (1974).Google Scholar
  344. 344.
    H. Fong and L. Sucheston, “On unaveraged convergence of positive operators in Lebesgue space,” Trans. Am. Math. Soc.,179, May, 383–397 (1973).Google Scholar
  345. 345.
    H. Fong and L. Sucheston, “On the ratio ergodic theorem for semi-groups,” Pacific J. Math.,39, No. 3, 659–667 (1971).Google Scholar
  346. 346.
    F. Forelli, “Analytic and quasi-invariant measures,” Acta Math.,118, 33–59 (1967).Google Scholar
  347. 347.
    F. Forelli, “Conjugate functions and flows,” Quart J. Math.,20, No. 7, 215–233 (1969).Google Scholar
  348. 348.
    J. Franks, “Anosov diffeormorphism on tori,” Trans. Am. Math. Soc.,145, 117–124 (1969).Google Scholar
  349. 349.
    J. Franks, “Anosov diffeomorphisms,” in: Global Analysis, Vol. 14, Proc. Symp. Pure. Math., Providence (1970).Google Scholar
  350. 350.
    N. A. Friedman, “On mixing entropy and generators,” J. Math. Anal. and Appl.,26, No. 3, 512–528 (1969).Google Scholar
  351. 351.
    N. A. Friedman, Introduction to Ergodic Theory, Vol. 4, Van Nostrand, New York (1970).Google Scholar
  352. 352.
    N. A. Friedman, “Bernoulli shifts induce Bernoulli shifts,” Adv. Math.,10, No. 1, 39–48 (1973).Google Scholar
  353. 353.
    N. A. Friedman and D. S. Ornstein, “On isomorphism of weak Bernoulli transformations,” Adv. Math.,5, No. 3, 365–394 (1970).Google Scholar
  354. 354.
    N. A. Friedman and D. S. Ornstein, “Ergodic transformations induce mixing transformations,” Adv. Math.,10, No. 1, 147–163 (1973).Google Scholar
  355. 355.
    M. Fukushima, “Almost polar sets and an ergodic theorem,” J. Math. Soc. Jap.,26, No. 1, 17–32 (1974).Google Scholar
  356. 356.
    C. O. Wilde (editor), Functional Analysis. Proc. Sympos. Held at Montery, California, Oct., 1969, Academic Press, New York (1970), VII.Google Scholar
  357. 357.
    H. Furstenberg, “Disjointness in ergodic theory, minimal sets, and a problem in diophatine approximation,” Math. Syst. Theory,1, No. 1, 1–49 (1967).Google Scholar
  358. 358.
    H. Furstenberg, “The unique ergodicity of the horocycle flow,” Lect. Notes Math.,318, 95–115 (1973).Google Scholar
  359. 359.
    G. Gallavotti, “Ising model and Bernoulli schemes in one dimension,” Communs. Math. Phys.,31, No. 2, 183–190 (1973).Google Scholar
  360. 360.
    G. Gallavotti and D. Ornstein, “Billiards and Bernoulli schemes,” Commun. Math. Phys.,38, No. 2, 83–101 (1974).Google Scholar
  361. 361.
    S. Goldstein, “Space-time ergodic properties of system of infinitely many independent particles,” Commun. Math. Phys.,39, No. 4, 303–328 (1975).Google Scholar
  362. 362.
    S. Goldstein, O. Landford, and J. L. Leibowitz, “Ergodic properties of simple model system with collisions,” J. Math. Phys.,14, No. 9, 1228–1230 (1973).Google Scholar
  363. 363.
    T. N. T. Goodman, “Relating topological entropy and measure entropy,” Bull. London Math. Soc.,3, No. 2, 176–180 (1971).Google Scholar
  364. 364.
    T. N. T. Goddman, “Maximal measure for expansive homeomorphisms,” J. London Math. Soc.,5, No. 3, 439–444 (1972).Google Scholar
  365. 365.
    G. R. Goodson, “Simple approximation and skew products,” J. London Math. Soc.,7, No. 1, 147–156 (1973).Google Scholar
  366. 366.
    L. W. Goodwyn, “Topological entropy bounds measure-theoretic entropy,” Proc. Am. Math. Soc.,23, No. 3, 679–688 (1969).Google Scholar
  367. 367.
    L. W. Goodwyn, “A characterization of symbolic cascades in terms of expansiveness and topological entropy,” Math. Syst, Theor.,4, No. 2, 157–159 (1970).Google Scholar
  368. 368.
    L. W. Goodwyn, “Topological entropy bounds measure-theoretic entropy,” Lect. Notes Math.,235, 69–84 (1971).Google Scholar
  369. 369.
    L. W. Goodwyn, “Comparing topological entropy with measure-theoretic entropy,” Am. J. Math.,94, No. 2, 366–388 (1972).Google Scholar
  370. 370.
    L. W. Green, “Group-like decompositions of Riemannian bundles,” Lect. Notes Math.,318, 126–139 (1973).Google Scholar
  371. 371.
    L. W. Green, “The generalized geodesic flow,” Duke Math. J.,41, No. 1, 115–126 (1974).Google Scholar
  372. 372.
    C. Grillenberger, “Constructions of strictly ergodic systems. I. Given entropy,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,25, No. 4, 323–334 (1973).Google Scholar
  373. 373.
    C. Grillenberger, “Constructions of strictly ergodic systems. II. K-systems,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,25, No. 4, 335–342 (1973).Google Scholar
  374. 374.
    S. B. Guthery, “An inversion algorithm for one-dimensional F-expansions,” Ann. Math. Stat.,41, No. 5, 1472–1490 (1970).Google Scholar
  375. 375.
    A. Hannen, “Processes ponctuels stationaires et flot spéciaux,” Ann. Inst. H. Poincaré,B7, No. 1, 23–30 (1971).Google Scholar
  376. 376.
    A. B. Hajian and Y. Ito, “Conservative positive contractions in L1,” in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probabil., 1965–66, Vol. 2, Part 2, Berkeley-Los Angles (1967), pp. 375–404.Google Scholar
  377. 377.
    A. B. Hajian and Y. Ito, “Weakly wandering and related sequences,” Z. Wahrscheinlich-keitstheor. und Verw. Geb.,8, No. 4, 315–324 (1967).Google Scholar
  378. 378.
    A. B. Hajian and Y. Ito, “Cesaro sums and measurable transformations,” J. Comb. Theory,7, No. 3, 239–254 (1969).Google Scholar
  379. 379.
    A. B. Hajian and Y. Ito, “Weakly wandering sets and invariant measures for a group of transformations,” J. Math. and Mech.,18, No. 12, 1203–1216 (1969).Google Scholar
  380. 380.
    A. B. Hajian, Y. Ito, and S. Kakutani, “Invariant measures and orbits of dissipative transformations,” Adv. Math.,9, No. 1, 52–65 (1972).Google Scholar
  381. 381.
    F. Hahn, “Discrete real time flows with quasidiscrete spectra and algebras generated by exp q(t),” Isr. J. Math.,16, No. 1, 20–37 (1973).Google Scholar
  382. 382.
    F. Hahn and Y. Katznelson, “On the entropy of uniquely ergodic transformations,” Trans. Am. Math. Soc.,126, No. 2, 335–360 (1967).Google Scholar
  383. 383.
    F. Hahn and W. Parry, “Some characteristic properties of dynamical systems with quasidiscrete spectra,” Math. Syst. Theory,2, No. 2, 179–190 (1968).Google Scholar
  384. 384.
    G. Hansel, “Automorphismes induits et valeurs propres,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,25, No. 2, 155–157 (1973).Google Scholar
  385. 385.
    G. Hansel, “Strict uniformity in ergodic theory,” Math. Z.,135, No. 3, 221–248 (1974).Google Scholar
  386. 386.
    G. Hansel and J. P. Raoult, “Ergodicity, uniformity and unique ergodicity,” Indiana Univ. Math. J.,23, No. 3, 221–237 (1973).Google Scholar
  387. 387.
    D. L. Hanson and G. Pledger, “On the mean ergodic theorem for weighted averages,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 141–149 (1969).Google Scholar
  388. 388.
    D. L. Hanson and F. T. Wright, “On the existence of equivalent finite invariant measures,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,14, No. 3, 200–202 (1970).Google Scholar
  389. 389.
    W. K. Hayman and S. M. Rudolfer, “On the relation between some metric invariants for Markov shifts,” Period. Math. Hungr.,2, No. 1–4, 133–148 (1972).Google Scholar
  390. 390.
    G. A. Hedlund, “Endomorphisms and automorphisms of the shifts dynamical systems,” Math. Syst. Theory,3, 320–375 (1969).Google Scholar
  391. 391.
    G. Helmberg, “Über konservative Transformationen,” Math. Ann.,165, No. 1, 44–61 (1966).Google Scholar
  392. 392.
    G. Helmberg, “Über mittlere Ruckkehrzeit unter einer masstreuen Strömung,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 165–179 (1969).Google Scholar
  393. 393.
    G. Helmberg, “On the converse of Hopfs ergodic theorem,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,21, No. 1, 77–80 (1971).Google Scholar
  394. 394.
    G. Helmberg and F. H. Simons, “A dualization of Kac's recurrence theorem,” Proc. Koninkl. Nederl. Akad. Wet.,A69, No. 5, 608–615 (1966).Google Scholar
  395. 395.
    G. Helmberg and F. H. Simons, “On the conservative parts of the Markov processes induced by a measurable transformation,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,11, No. 3, 165–180 (1969).Google Scholar
  396. 396.
    G. Helmberg and F. H. Simons, “Aperiodic transformations,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 180–190 (1969).Google Scholar
  397. 397.
    M. W. Hirsch, J. Palis, C. Pugh, and M. Shub, “Neighborhoods of hyperbolic sets,” Inventiones Math.,9, 121–134 (1970).Google Scholar
  398. 398.
    M. W. Hirsch and C. Pugh, “Stable manifolds and hyperbolic sets,” Bull. Am. Math. Soc.,75, No. 1, 149–152 (1969).Google Scholar
  399. 399.
    M. W. Hirsch, C. Pugh, and M. Shub, “Invariant manifold,” Preprint.Google Scholar
  400. 400.
    M. W. Hirsch, C. Pugh, and M. Shub, “Invariant manifolds,” Bull. Am. Math. Soc.,76, No. 5, 1015–1019 (1970).Google Scholar
  401. 401.
    E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature,” Bull. Am. Math. Soc.,77, No. 6, 863–877 (1971).Google Scholar
  402. 402.
    P. D. Humphries, “Change of velocity in dynamical systems,” J. London Math. Soc.,7, No. 4, 747–757 (1974).Google Scholar
  403. 403.
    N. E. Hurt, “Entropy of a fibered dynamical system,” Int. J. Theor. Phys.,7, No. 3–4, 263–266 (1973).Google Scholar
  404. 404.
    V. I. Istrătescu, “On a class of operators and ergodic theory. I,” Rev. Roum. Math. Pures et Appl.,19, No. 4, 411–420 (1974).Google Scholar
  405. 405.
    S. Ito, “An estimate from above for an entropy and the topological entropy of a C1-diffeomorphism,” Proc. Jap. Acad.,46, No. 3, 226–230 (1970).Google Scholar
  406. 406.
    S. Ito, “An elementary proof of Abramov's result on the entropy of a flow,” Nagoya Math. J.,41, 1–5 (1971).Google Scholar
  407. 407.
    S. Ito, H. Murata, and H. Totoki, “Remarks on the isomorphism theorems for weak Bernoulli transformations in the general case,” Publ. Res. Inst. Math. Sci.,7, No. 3, 541–580 (1972).Google Scholar
  408. 408.
    K. Jacobs, “Invariant and noninvariant measures,” Lect. Notes Math.,31, 118–135 (1967).Google Scholar
  409. 409.
    K. Jacobs, Einige Neuere Ergebnisse der Ergodentheorie, Sitzungsber. Berliner Math. Ges. (1965–1966).Google Scholar
  410. 410.
    K. Jacobs, “On Poincare's recurrence theorem,” in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probabil. 1965–66, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 375–404.Google Scholar
  411. 411.
    K. Jacobs, “Systemes dynamiques Riemannien,” Czechosl. Mat.,20, No. 4, 628–631 (1970).Google Scholar
  412. 412.
    K. Jacobs, “Combinatorial constructions in ergodic theory,” in: Proc. Int. Conf. Funct. Anal. and Relat. Topics, Tokyo, 1969, Tokyo (1970), pp. 398–399.Google Scholar
  413. 413.
    K. Jacobs, “Lipshitz functions and the prevalence of strict ergodicity for continuoustime flows,” Lect. Notes Math.,160, 87–124 (1970).Google Scholar
  414. 414.
    K. Jacobs, “Recent development in ergodic theory,” Erlangen, Preprint (1974).Google Scholar
  415. 415.
    K. Jacobs and M. Keane, “0–1-sequences of Toeplitz type,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, 123–131 (1969).Google Scholar
  416. 416.
    R. I. Jewett, “The prevalence of uniquely ergodic systems,” J. Math. and Mech.,19, No. 8, 717–729 (1970).Google Scholar
  417. 417.
    R. I. Jewett and S. Schwartzman, “Dynamical systems with an invariant space of vector fields,” Trans. Am. Math. Soc.,147, No. 1, 127–134 (1970).Google Scholar
  418. 418.
    L. K. Jones, “A mean ergodic theorem for weakly mixing operators,” Adv. Math.,7, No. 3, 211–213 (1971).Google Scholar
  419. 419.
    L. K. Jones, “A short proof of Sucheston's characterisation of mixing,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,23, No. 2, 83–84 (1972).Google Scholar
  420. 420.
    L. K. Jones, “A generalization of the mean ergodic theorem in Banach spaces,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,27, No. 2, 105–107 (1973).Google Scholar
  421. 421.
    L. K. Jones and U. Krengel, “On transformations without finite invariant measure,” Adv. Math.,12, No. 3, 275–295 (1974).Google Scholar
  422. 422.
    L. K. Jones and W. Parry, “Compact Abelian group extensions of dynamical systems. II,” Compos. Math.,25, No. 2, 135–147 (1972).Google Scholar
  423. 423.
    S. Kakutani, “Ergodic theory of shift transformations,” in: Proc. Fifth Berkeley Sympos. Math. Statis. and Probabil. 1965–66, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 405–414.Google Scholar
  424. 424.
    S. Kakutani, “Classification of ergodic groups of automorphisms,” in: Proc. Int. Conf. Funct. Anal. and Relat. Topics, Tokyo, 1969, Tokyo (1970), pp. 392–397.Google Scholar
  425. 425.
    S. Kakutani, “Examples of ergodic measure preserving transformations which are weakly mixing but not strongly mixing,” Lect. Notes Math.,318, 143–149 (1973).Google Scholar
  426. 426.
    T. Kamae, “A topological invariant of substitution minimal sets,” J. Math. Soc. Jap.,24, No. 2, 285–305 (1972).Google Scholar
  427. 427.
    Ya. Katznelson, “Ergodic automorphisms of Tn are Bernoulli shifts,” Isr. J. Math.,10, No. 2, 186–195 (1971).Google Scholar
  428. 428.
    Y. Katznelson and B. Weiss, “The construction of quasi-invariant measures,” Isr. J. Math.,12, No. 1, 1–4 (1972).Google Scholar
  429. 429.
    Y. Katznelson and B. Weiss, “Commuting measure-preserving transformations,” Isr. J. Math.,12, No. 2, 161–173 (1972).Google Scholar
  430. 430.
    M. Keane, “Sur les measures quasi-ergodiques des translations irrationelles,” C.R. Acad. Sci.,272, No. 1, A54-A55 (1971).Google Scholar
  431. 431.
    M. Keane, “Contractibility of the automorphism group of a nonatomic measure space,” Proc. Am. Math. Soc.,26, No. 3, 420–422 (1970).Google Scholar
  432. 432.
    M. Keane, “Generalized Morse sequences,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,10, 335–353 (1968).Google Scholar
  433. 433.
    M. Keane, “Sur les mesures invariants d'un recouvrement régulier,” C.R. Acad. Sci.,272, No. 9, A585-A587 (1971).Google Scholar
  434. 434.
    M. Keane, “Interval exchange transformations,” University of Amsterdam, Department of Mathematics, March, 1974, Preprint.Google Scholar
  435. 435.
    M. Keane and P. Michel, “Généralization d'un lemme de “découpage” de Rokhlin,” C.R. Acad. Sci.,274, No. 11, A926-A928 (1972).Google Scholar
  436. 436.
    H. G. Keynes, “The structure of weakly mixing minimal transformation groups,” Ill. J. Math.,15, No. 3, 475–489 (1971).Google Scholar
  437. 437.
    Y. Kijima and W. Takahashi, “Adjoint ergodic theorems for amenable semigroups of operators,” Sci. Repts. Yokohama Nat. Univ., Sec. 1, No. 20, 1–4 (1973).Google Scholar
  438. 438.
    Kim Choo-Whan, “A generalization of Ito's theorem concerning the pointwise ergodic theorem,” Ann. Math. Stat.,39, No. 6, 2145–2148 (1968).Google Scholar
  439. 439.
    E. Kin, “Skew products of dynamical systems,” Trans. Am. Math. Soc.,166, 27–43 (1972).Google Scholar
  440. 440.
    E. Kin, “Ergodic and mixing properties of measure preserving transformations,” Proc. Japan Acad.,46, No. 1, 47–50 (1970).Google Scholar
  441. 441.
    E. Kin, “A simple geometric construction of weakly mixing flows which are not strongly mixing,” Proc. Jap. Acad.,47, No. 1, 50–53 (1971).Google Scholar
  442. 442.
    E. Kin, “The general random ergodic theorem,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,22, No. 2, 120–135 (1972).Google Scholar
  443. 443.
    E. Kin, “The general random ergodic theorem. II,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,22, No. 2, 136–144 (1972).Google Scholar
  444. 444.
    J. F. C. Kingman, “An ergodic theorem,” Bull. London Math. Soc.,1, No. 3, 339–340 (1969).Google Scholar
  445. 445.
    E. M. Klimko, “On the entropy of a product endomorphism in infinite measure space,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,12, No. 4, 290–292 (1969).Google Scholar
  446. 446.
    E. M. Klimko and L. Sucheston, “On convergence of information in spaces with infinite invariant measure,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,10, No. 3, 226–235 (1968).Google Scholar
  447. 447.
    E. M. Klimko and L. Sucheston, “An operator ergodic theorem for sequences of functions,” Proc. Am. Soc.,20, No. 1, 272–276 (1969).Google Scholar
  448. 448.
    W. Klingenberg, “Riemannian manifolds with geodesic flow of Anosov type,” Ann. Math.,99, No. 1, 1–13 (1974).Google Scholar
  449. 449.
    M. Kowada, “On a complete metric invariant for group automorphisms on the torus,” Tohoku Math. J.,22, No. 4, 525–535 (1970).Google Scholar
  450. 450.
    M. Kowada, “The orbit-preserving transformation groups associated with a measurable flow,” J. Math. Soc. Jap.,24, No. 3, 355–373 (1972).Google Scholar
  451. 451.
    M. Kowada, “Convergence rate in the ergodic theorem for an analytic flow on the torus,” Lect. Notes Math.,330, 251–254 (1973).Google Scholar
  452. 452.
    U. Krengel, “On the entropy of flows,” Colloq. Inform. Theory, Dbrencen, 1967. Abstracts. Budapest.Google Scholar
  453. 453.
    U. Krengel, “Entropy of conservative transformations,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,7, No. 3, 161–181 (1967).Google Scholar
  454. 454.
    U. Krengel, “Darstellungssätze für Strömungen und Halbströmungen. I,” Math. Ann.,176, No. 3, 181–190 (1968).Google Scholar
  455. 455.
    U. Krengel, “A local ergodic theorem,” Invent. Math.,6, No. 4, 329–333 (1969).Google Scholar
  456. 456.
    U. Krengel, “Classification of states for operators,” in: Proc Fifth Berkeley Sympos. Math. Statist. and Probabil., 1965–66, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 415–429.Google Scholar
  457. 457.
    U. Krengel, “Darstellungssätze für Strömungen and Halbströmungen. II,” Math. Ann.,182, No. 1, 1–39 (1969).Google Scholar
  458. 458.
    U. Krengel, “Transformations without finite invariant measure have finite strong generators,” Lect. Notes Math.,160, 133–157 (1970).Google Scholar
  459. 459.
    U. Krengel, “On certain analogous difficulties in the investigation of flows in a probability space and a transformations in a infinite measure space,” in: Funct. Analysis, Proceedings of a Symposium, C. O. Wilde (editor) Academic Press, New York (1970), pp. 75–91.Google Scholar
  460. 460.
    U. Krengel, “On the individual ergodic theorem for subsequences,” Ann. Math. Stat.,42, No. 3, 1091–1095 (1971).Google Scholar
  461. 461.
    U. Krengel, “K-flows are foward deterministic, backward completely nondeterministic stationary point processes,” J. Math. Anal. und Appl.,35, No. 3, 611–620 (1971).Google Scholar
  462. 462.
    U. Krengel, “Weakly wandering vectors and weakly independent partitions,” Trans. Am. Math. Soc.,164, Febr., 199–226 (1972).Google Scholar
  463. 463.
    U. Krengel, “Recent results on generators in ergodic theory,” in: Trans. Sixth Prague Conf. Inform. Theory Statis. Decis. Funct. Random Proces., Prague (1973), pp. 465–482Google Scholar
  464. 464.
    U. Krengel and L. Sucheston, “On mixing in infinite measure spaces,” Bull. Am. Math. Soc.,74, No. 6, 1150–1155 (1968).Google Scholar
  465. 465.
    U. Krengel and L. Sucheston, “Note on shift invariant sets,” Ann. Math. Stat.,40, No. 2, 694–696 (1969).Google Scholar
  466. 466.
    U. Krengel and L. Sucheston, “On mixing in infinite measure space,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 150–164 (1969).Google Scholar
  467. 467.
    K. Krickeberg, “Mischende Transformationen auf Mannigfaltigkeiten unendlichen Massen,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,7, No. 4, 235–247 (1967).Google Scholar
  468. 468.
    K. Krickeberg, “Strong mixing properties of Markov chains with infinite invariant measure,” in: Proc. Fifth Bekeley Sympos. Math. Statist. and Probabil., 1965–66, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 431–446.Google Scholar
  469. 469.
    W. Krieger, “On the isomorphy problem for ergodic equivalence relations,” Math. Z.,103, No. 1, 78–84 (1968).Google Scholar
  470. 470.
    W. Krieger, “On nonsingular transformations of a measure space,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,11, No. 2, 83–97, 98–119 (1969).Google Scholar
  471. 471.
    W. Krieger, “On nonsingular transformations of a measure space. II,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,11, No. 2, 98–119 (1969).Google Scholar
  472. 472.
    W. Krieger, “On entropy and generators of measure-preserving transformations,” Trans. Am. Math. Soc.,119, No. 2, 453–464 (1970).Google Scholar
  473. 473.
    W. Krieger, “On constructing nonisomorphic hyperfinite factors of type III,” J. Funct. Anal.,6, No. 1, 97–109 (1970).Google Scholar
  474. 474.
    W. Krieger, “On the Araki-Woods asymptotic ratio set and nonsingular transformations of a measure space,” Lect. Note Math.,160, 158–177 (1970).Google Scholar
  475. 475.
    W. Krieger, “On generators in exhaustive σ-algebras of ergodic measure-preserving transformations,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,20, No. 1, 75–82 (1971).Google Scholar
  476. 476.
    W. Krieger, “On quasi-invariant measures on uniquely ergodic systems,” Invent. Math.,14, No. 3, 184–196 (1971).Google Scholar
  477. 477.
    W. Krieger, “On a class of hyperfinite factors that arise from null-recurrent Markov chains,” J. Funct. Anal.,7, No. 1, 27–42 (1971).Google Scholar
  478. 478.
    W. Krieger, “On nonsingular transformations that arise from Kolmogoroff systems,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,22, No. 1, 91–94 (1972).Google Scholar
  479. 479.
    W. Krieger, “On the infinite product construction of a nonsingular transformation of a measure space,” Invent. Math.,15, No. 2, 144–163 (1972).Google Scholar
  480. 480.
    W. Krieger, “On unique ergodicity,” in: Proc. Sixth Berkely Symp. Math. Statist. and Probabil., Vol. 2, Berkeley-Los Angeles (1972), pp. 327–345.Google Scholar
  481. 481.
    B. Kronfeld, “Some properties of invertible ergodic transformations,” Glas. Mat.,5, No. 1, 35–41 (1970).Google Scholar
  482. 482.
    B. Kronfeld, “Ergodic transformations and independence,” Glas. Mat.,5, No. 2, 221–226 (1970).Google Scholar
  483. 483.
    E. Krug, Folgentropie für Abelsche Gruppen von Automorphismen, Diss. Doktorgrad, Naturwiss. Fak. Friedrich-Alexander-Univ. Erlangen-Nürnberg (1973).Google Scholar
  484. 484.
    E. Krug and D. Newton, “On sequence entropy of automorphisms of a Lebesgue space,” Z. Wahrscheinlichkeiststheor. und Verw. Geb.,24, No. 3, 211–214 (1972).Google Scholar
  485. 485.
    K. Krzyzewski, “On expanding mappings,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. et. Phys.,19, No. 1, 23–24 (1971).Google Scholar
  486. 486.
    K. Krzyzewski, “On connection between expanding mappings and Markov chains,” Bull. Acad. Pol. Sci. Ser. Math. Astron. et Phys.,19, No. 4, 291–293 (1973).Google Scholar
  487. 487.
    K. Krzyzewski, “On a problem of Rohlin,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. et. Phys.,20, No. 3, 207–210 (1972).Google Scholar
  488. 488.
    K. Krzyzewski, “Expanding mappings and Bernoulli shifts,” Var Publs. Ser. Mat. Inst. Aarhus Aarhus Univ., No. 23, 1–3 (1972).Google Scholar
  489. 489.
    K. Krzyzewski and W. Szlenk, “On invariant measures of expanding differentiable mappings,” Stud. Math.,33, No. 1, 83–92 (1969).Google Scholar
  490. 490.
    I. Kubo, “Infinite product of ergodic flows with pure point spectra,” Proc. Japan Acad.,43, No. 4, 258–262 (1967).Google Scholar
  491. 491.
    I. Kubo, “Quasi-flows,” Nagoya Math. J.,35, 1–30 (1969).Google Scholar
  492. 492.
    I. Kubo, “Quasi-flows. II. Additive functionals and TQ-systems,” Nagoya Math. J.,40, 39–66 (1970).Google Scholar
  493. 493.
    I. Kubo, “Representations of quasi-flows with multidimensional parameter,” in: Proc. Int. Conf. Funct. Anal. and Relat. Topics, Tokyo, 1969, Tokyo (1970), pp. 405–413.Google Scholar
  494. 494.
    I. Kubo, “Ergodicity of the dynamical system of a particle on a domain with irregular walls,” Proc. Second Japan-USSR Symp. Prob. Lect. Notes Math. Vol. 330, Springer-Verlag, Berlin-Heidelberg-New York (1973), pp. 287–295.Google Scholar
  495. 495.
    I. Kubo, Ergodicity of the dynamical system of a particle on a domain with irregular walls,” Lect Notes Math.,330, 287–295 (1973).Google Scholar
  496. 496.
    I. Kubo, H. Murata, and H. Totoki, “On the isomorphism problem for endomorphisms of Lebesgue spaces. I,” Publs. Res. Inst. Math. Sci.,9, No. 2, 285–296 (1974).Google Scholar
  497. 497.
    I. Kubo, H. Murata, and H. Totoki, “On the isomorphism problem for endomorphisms of Lebesgue spaces. II,” Publs. REs. Inst. Math. Sci.,9, No. 2, 297–303 (1974).Google Scholar
  498. 498.
    I. Kubo, H. Murata, and H. Totoki, “On the isomorphism problem for endomorphisms of Lebesgue spaces. III,” Publs. Res. Inst. Math. Sci.,9, No. 2, 305–317 (1974).Google Scholar
  499. 499.
    Yoshihiro Kubokawa, “Finite and infinite invariant measures for a measurable transformation,” Ann. Inst. Statist. Math.,21, No. 1, 185–193 (1969).Google Scholar
  500. 500.
    Yoshihiro Kubokawa, “Boundedness of a measurable transformation and a weakly wandering set,” Ann. Inst. Statist. Math.,21, No. 3, 537–540 (1969).Google Scholar
  501. 501.
    Yoshihiro Kubokawa, “A general local ergodic theorem,” Proc. Jap. Acad.,48, No. 7, 461–465 (1972).Google Scholar
  502. 502.
    Yoshihiro Kubokawa, “A pointwise ergodic theorem for positive bounded operator,” Proc. Jap. Acad.,48, No. 7, 458–460 (1972).Google Scholar
  503. 503.
    A. J. Kuntz, “Groups of transformations without finite invariant measures have strong generators of size 2,” The Annals of Prob.,2, No. 1, 143–146 (1974).Google Scholar
  504. 504.
    A. J. Kuntz and D. H. Tucker, “An extended form of the mean ergodic theorem,” Pacific J. Math.,27, No. 3, 539–545 (1968).Google Scholar
  505. 505.
    J. Kwiatkowski, “Unitary operators with discrete spectrum induced by measure preserving transformations,” Repts. Math. Phys.,4, No. 3, 203–210 (1973).Google Scholar
  506. 506.
    P.-F. Lam, The Problem of Embedding a Homeomorphism in a Flow Subject to Differentiability Condition, Doct. Diss. Yale Univ. (1967), Dissert. Abstrs.,B28, No. 10, 4201 (1968).Google Scholar
  507. 507.
    O. Lanford, “Entropy and equilibrium states in classical statistical mechanics,” in: A. Lenard (editor), Statistical Mechanics and Mathematical Problems, Springer-Verlag, Lecture Notes Phys., Vol. 20, (1968).Google Scholar
  508. 508.
    K. Langee, “A reciprocity theorem for ergodic actions,” Trans. Am. Math. Soc.,167, May, 59–78 (1972).Google Scholar
  509. 509.
    A. Lasota and J. A. Yorke, “On the existence of invariant measures for piecewise monotonic transformations,” Trans. Am. Math. Soc.,186, 481–488 (1973).Google Scholar
  510. 510.
    K. Lau and A. Zame, “On weak mixing of cascades,” Math. Syst. Theory,6, No. 4, 307–311 (1973).Google Scholar
  511. 511.
    J. L. Leibowitz, “Ergodic theory and statistical mechanics of nonequilibrium processes,” Lect. Notes Math.,322, 193–209 (1973).Google Scholar
  512. 512.
    F. Ledgrappier, “Mesures d'equilibre sur un reseau,” Commun. Math. Phys.,33, 119–128 (1973).Google Scholar
  513. 513.
    F. Ledgrappier et J.-C. Marcuard, Sur la methode du “decoupage,” C.R. Acad. Sci.,274, No. 4, A362-A365 (1972).Google Scholar
  514. 514.
    D. Leviatan and M. S. Ramanujan, “A generalization of the mean ergodic theorem,” Stud. Math. (PRL),39, No. 2, 113–117 (1971).Google Scholar
  515. 515.
    F. Liberto, G. Gallavotti, and L. Russo, “Markov processes, Bernoulli schemes, and Ising model,” Communs Math. Phys.,33, No. 4, 259–282 (1973).Google Scholar
  516. 516.
    M. Lin, “Mixed ratio limit theorems for Markov processes,” Isr. J. Math.,8, No. 4, 357–366 (1970).Google Scholar
  517. 517.
    D. A. Lind, “Ergodic automorphism of the infinite torus are Bernoulli,” Isr. J. Math.,17, No. 2, 162–168 (1974).Google Scholar
  518. 518.
    G. W. Mackey, “Ergodicity in the theory of group representations,” in: Actes Congr. Int. Math., 1970, Vol. 2, Paris (1971), pp. 401–405.Google Scholar
  519. 519.
    G. W. Mackey, “Ergodic theory and its significance for statistical mechanics and probability theory,” Adv. Math.,12, No. 2, 176–268 (1974).Google Scholar
  520. 520.
    V. Mandrekar and M. Nadkarni, “On ergodic quasi-invariant measures on the circle group,” J. Funct. Anal.,3, No. 2, 157–163 (1969).Google Scholar
  521. 521.
    V. Mandrekar and M. Nadkarni, “Singular invariant measures on the line,” Stud. Math.,35, No. 1, 1–13 (1970).Google Scholar
  522. 522.
    A. Manning, “There are no new Anosov diffeomorphisms on tori,” Am. J. Math.,96, No. 3, 422–429 (1974).Google Scholar
  523. 523.
    J. C. Marcuard, “Entropie et proprietes spectrales des automorphismes admettant une approximation,” C.R. Acad. Sci.,272, No. 9, A608-A611 (1971).Google Scholar
  524. 524.
    J. C. Martin, “Substitution minimal flows,” Am. J. Math.,93, No. 2, 503–526 (1971).Google Scholar
  525. 525.
    J. C. Martin, “A class of zeta functions for ergodic theory,” J. Math. Anal. and Appl.,38, No. 3, 735–745 (1972).Google Scholar
  526. 526.
    G. Maruyama, “Transformations of flows,” J. Math. Soc. Japan,18, No. 3, 303–330 (1966).Google Scholar
  527. 527.
    G. Maruyama, “A singular flow with countable Lebesgue spectrum,” J. Math. Soc. Japan,19, No. 3, 359–365 (1967).Google Scholar
  528. 528.
    G. Maruyama, “Some aspects of Ornstein's theory of isomorphism problems in ergodic theory,” Publ. Res. Inst. Math. Sci.,7, No. 3, 511–539 (1972).Google Scholar
  529. 529.
    G. Maruyama, “Applications of Ornstein's theory to stationary processes,” Lect. Notes Math.,330, 304–309 (1973).Google Scholar
  530. 530.
    Mathematical Methods in Celestial Mechanics. Compl. Krichgraber Urs (Tagungsbericht Aug. 27–Sept. 2, 1972, No. 35). Math. Forschungsist Oberwolfach.Google Scholar
  531. 531.
    R. McCabe and P. Shields, “A class of Markov shifts which are Bernoulli shifts,” Adv. Math.,6, No. 3, 323–328 (1971).Google Scholar
  532. 532.
    S. A. MacGrath, “Two ergodic theorems for convex combinations of commuting isometries,” Proc. Am. Math. Soc.,40, No. 1, 229–234 (1973).Google Scholar
  533. 533.
    P. A. Meyer, “Solutions de 1'equation de Poisson dans le cas recurrent,” Lect. Notes Math.,191, 251–269 (1971).Google Scholar
  534. 534.
    P. A. Meyer, “Travaux de H. Rost en theorie du balyage,” Lect. Notes Math.,191, 237–250 (1971).Google Scholar
  535. 535.
    M. Metivier, “Existence of an invariant measure and an Ornstein's ergodic theorem,” Ann. Math. Stat.,40, No. 1, 79196 (1969).Google Scholar
  536. 536.
    H. Michel, “Vollergodischer Automorphismen mit quasidiskreten Spektrum und Wurzeln jeder rationalen Ordnung,” Beitr. Anal. und Angew. Math. Berlin, 122–128 (1968).Google Scholar
  537. 537.
    H. Michel, “Wurzeln vollergodischer Automorphismen mit quasidiskretem Spectrum. I,” Z. Wahrscheinlichkeitstheor. Verw. Geb.,9, 323–340 (1968).Google Scholar
  538. 538.
    H. Michel, “Wurzeln vollergodischer Automorphismen mit quasidiskretem Spektrum. II,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,16, No. 4, 321–335 (1970).Google Scholar
  539. 539.
    P. Michel, “Stricte ergodicité d'ensembles minimaux de substitution,” C.R. Acad. Sci.,A278, No. 11, 811–813 (1974).Google Scholar
  540. 540.
    M. Misiurewicz, “On the expanding maps of compact manifold and local homeomorphisms of a circle,” Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron., et Phys.,18, No. 12, 725–732 (1970).Google Scholar
  541. 541.
    M. Misiurewicz, “Diffeomorphism without any measure with maximal entropy,” Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. et Phys.,21, No. 10, 903–910 (1973).Google Scholar
  542. 542.
    C. Moore, “Ergodicity of flows on homogeneous spaces,” Am. J. Math.,88, No. 1, 154–178 (1966).Google Scholar
  543. 543.
    C. Moore, “Invariant measures on product spaces,” in: Proc. Fifth Berkeley Smpos. Math. Statist. and Probabil., 1965–1966, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 447–459.Google Scholar
  544. 544.
    J. Moser, Stable and Random Motions in Dynamical Systems. With Special Emphasis on Celestial Mechanics, Ann. Math. Studies, No. 77 (1973).Google Scholar
  545. 545.
    P. S. Muhly, “Function algebras and flows,” Acta Sci. Math.,35, 111–121 (1973).Google Scholar
  546. 546.
    P. S. Muhly, “Function algebras and flows. II,” Ark. Mat.,11, No. 2, 203–213 (1973).Google Scholar
  547. 547.
    B. Nagel, “Some results in noncommutative ergodic theory,” Communs. Math. Phys.,26, No. 3, 247–258 (1972).Google Scholar
  548. 548.
    B. Nagel and M. Wolff, “Abstract dynamical systems with an application to operators with discrete spectrum,” Arch. Math.,23, No. 2, 170–176 (1972).Google Scholar
  549. 549.
    Y. Nakamura, “A representation of entropy preserving isomorphisms between lattices of finite partitions,” Proc. Jap. Acad.,48, No. 2, 116–120 (1972).Google Scholar
  550. 550.
    S. Natarajan, “A category theorem in ergodic theory,” Teor. Veroyatn. Ee Prilozhen.,17, No. 2, 370–372 (1972).Google Scholar
  551. 551.
    K. Nawrotzki, “Mischungcigenschaften stationärer unbegrenzt teilbarer zufälliger Distribution,” Wiss. Z. Friedrich-Schiller Univ. Jena, Math. Naturwiss. Reihe,18, No. 2, 397–408 (1969).Google Scholar
  552. 552.
    J. Neveu, “Existence of bounded invariant measures in ergodic theory,” in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probabil., 1965–1966, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 461–472.Google Scholar
  553. 553.
    J. Neveu, “Une demonstration simplifée et une extension de la formule d'Abramov sur l'entropie des transformations induites,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 135–140 (1969).Google Scholar
  554. 554.
    J. Neveu, “Sur les suites de Toeplitz,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, 132–134 (1969).Google Scholar
  555. 555.
    J. Neveu, “Temps d'arret d'un systeme dynamique,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, 81–94 (1969).Google Scholar
  556. 556.
    S. Newhouse, “On codimension one Anosov diffeomorphisms,” Am. J. Math.,92, 761–770 (1970).Google Scholar
  557. 557.
    D. Newton, “Note on Kolmogorov automorphisms,” J. London Math. Soc.,43, No. 3, 457–458 (1968).Google Scholar
  558. 558.
    D. Newton, “On a principal factor system of a normal dynamical system,” J. London Math. Soc.,43, No. 2, 275–279 (1968).Google Scholar
  559. 559.
    D. Newton, “On Gaussian processes with simple spectrum,” Z. Wahrscheinlichkeitstheor. und. Verw. Geb.,5, 207–209 (1966).Google Scholar
  560. 560.
    D. Newton, “On the entropy of certain classes of skew-product transformations,” Proc. Am. Math. Soc.,21, No. 3, 722–726 (1969).Google Scholar
  561. 561.
    D. Newton, “On sequence entropy. I,” Math. Syst. Theor.,4, No. 2, 119–125 (1970).Google Scholar
  562. 562.
    D. Newton, “On sequence entropy. II,” Math. Syst. Theor.,4, No. 2, 126–128 (1970).Google Scholar
  563. 563.
    D. Newton, “On autormorphisms with no mixing factors,” J. London Math. Soc.,8, No. 4, 657–663 (1974).Google Scholar
  564. 564.
    D. Newton and W. Parry, “On a factor automorphism of a normal dynamical system,” Ann. Math. Statist.,37, No. 6, 1528–1533 (1966).Google Scholar
  565. 565.
    T. Niwa, “On the classical flows with discrete spectra,” Proc. Japan. Acad.,45, No. 1, 14–16 (1969).Google Scholar
  566. 566.
    T. Niwa, “On the classical flows with discrete spectra,” in: Proc. Int. Conf. Funct. Anal. and Relat. Topics, Tokyo, 1969, Tokyo (1970), pp. 400–404.Google Scholar
  567. 567.
    H. Nomoto, “Finite-dimensional approximations to some flows on the projective limit space of spheres. II,” Nagoya Math. J.,29, 127–135 (1967).Google Scholar
  568. 568.
    H. Nomoto, “On a class of metrical automorphisms on Gaussian measure space,” Nagoya Math. J.,38, 21–25 (1970).Google Scholar
  569. 569.
    V. Norton and T. O'Brien, “Anosov flows and expansiveness,” Proc. Am. Math. Soc.,40, No. 2, 625–628 (1973).Google Scholar
  570. 570.
    Y. Ogata, “On the simple β-automorphisms and its transverse,” Sci. Repts. Tekyo Kyoiku Daigaku Sec. A,12, 313–328 (1973).Google Scholar
  571. 571.
    D. S. Ornstein, “On invariant measures,” Bull. Am. Math. Soc.,66, No. 4, 297–300 (1960).Google Scholar
  572. 572.
    D. S. Ornstein, “Automorphism which commute only with its powers,” in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probabil., Berkeley-Los Angeles (1967), pp. 335–360.Google Scholar
  573. 573.
    D. S. Ornstein, “Bernoulli shifts with the same entropy are isomorphic,” Advances Math.,4, No. 3, 337–352 (1970).Google Scholar
  574. 574.
    D. S. Ornstein, “Two Bernoulli shifts with infinite entropy are isomorphic,” Advances Math.,5, No. 3, 339–348 (1970).Google Scholar
  575. 575.
    D. S. Ornstein, “Factors of Bernoulli shifts are Bernoulli shifts,” Adv. Math.,5, No. 3, 349–364 (1970).Google Scholar
  576. 576.
    D. S. Ornstein, “Imbedding Bernoulli shifts in flows,” Lect. Notes Math.,160, 178–218 (1970).Google Scholar
  577. 577.
    D. S. Ornstein, “A remark on the Birkhoff ergodic theorem,” III. J. Math.,15, No. 1, 77–79 (1971).Google Scholar
  578. 578.
    D. S. Ornstein, “Some new results in the Kolmogorov-Sinai theory of entropy and ergodic theory,” Bull. Am. Math. Soc.,77, No. 6, 878–890 (1971).Google Scholar
  579. 579.
    D. S. Ornstein, “Measure-preserving transformations and random processes,” Am. Math. Mon.,78, No. 8, 833–840 (1971).Google Scholar
  580. 580.
    D. S. Ornstein, “Entropy is enough to classify Bernoulli shifts but not K-automorphisms,” in: Actes Congr. Int. Math., 1970, Vol. 2, Paris (1971), pp. 571–575.Google Scholar
  581. 581.
    D. S. Ornstein, “An example of a Kolmogorov automorphism that is not a Bernoulli shift,” Adv. Math.,10, No. 1, 49–62 (1973).Google Scholar
  582. 582.
    D. S. Ornstein, “A K-automorphism with no square root and Pinsker's conjecture,” Adv. Math.,10, No. 1, 89–102 (1973).Google Scholar
  583. 583.
    D. S. Ornstein, “A mixing transformation for which Pinsker's conjecture fails,” Adv. Math.,10, No. 1, 103–123 (1973).Google Scholar
  584. 584.
    D. S. Ornstein, Ergodic Theory, Randomness and Dynamical Systems, Yale Mathematical Monographs, Yale Univ. Press (1974).Google Scholar
  585. 585.
    D. S. Ornstein and P. C. Shields, “Mixing Markov shifts of kernel type are Bernoulli,” Adv. Math.,10, No. 1, 143–146 (1973).Google Scholar
  586. 586.
    D. S. Ornstein and P. C. Shields, “An uncountable family of K-automorphisms,” Adv. Math.,10, No. 1, 63–88 (1973).Google Scholar
  587. 587.
    D. S. Ornstein and L. Sucheston, “On the existence of a σ-finite invariant measure under a generalized Harris condition,” Lect. Notes Math.,160, 219–233 (1970).Google Scholar
  588. 588.
    D. S. Ornstein and B. Weiss, “Geodesic flows are Bernoullian,” Isr. J. Math.,14, No. 2, 184–198 (1973).Google Scholar
  589. 589.
    M. Osikawa, “Ergodic measure preserving transformations and equivalence in a local sense,” Mem. Fac. Sci. Kyushu Univ. A.,26, No. 2, 193–199 (1972).Google Scholar
  590. 590.
    M. Osikawa and T. Hamashi, “On zero type and positive type transformations with infinite invariant measures,” Mem. Fac. Sci. Kyushu Univ.,A25, No. 2, 280–295 (1971).Google Scholar
  591. 591.
    M. Osikawa and T. Hamashi, “Topology entropy of a nonirreducible intrinsic Markov shift,” Mem. Fac. Sci. Kyushu Univ.,A25, No. 2, 296–299 (1971).Google Scholar
  592. 592.
    J. C. Oxtoby, “Approximations by a measure-preserving homeomorphism,” Lect. Notes Math.,318, 206–217 (1973).Google Scholar
  593. 593.
    F. Papangelou, “The Ambrose-Kakutani theorem and the Poisson process,” Lect. Notes Math.,160, 234–240 (1970).Google Scholar
  594. 594.
    W. Parry, “Intrinsic Markov chains,” Trans. Am. Math. Soc.,112, No. 1, 55–65 (1964).Google Scholar
  595. 595.
    W. Parry, “Compact Abelian group extensions of discrete dynamical systems,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 95–113 (1969).Google Scholar
  596. 596.
    W. Parry, “Ergodic properties of affine transformations and flows on nilmanifolds,” Am. J. Math.,51, No. 3, 757–771 (1969).Google Scholar
  597. 597.
    W. Parry, Entropy and Generators in Ergodic Theory, Benjamin, New York (1969).Google Scholar
  598. 598.
    W. Parry, “Dynamical systems on nilmanifolds,” Bull. London Math. Soc.,2, No. 1, 37–40 (1970).Google Scholar
  599. 599.
    W. Parry, “Spectral analysis of G-extensions of dynamical systems,” Topology,9, No. 3, 217–224 (1970).Google Scholar
  600. 600.
    W. Parry, “Metric classification of ergodic nilflows and unipotent affines,” Am. J. Math.,93, No. 3, 819–828 (1971).Google Scholar
  601. 601.
    W. Parry, “Ergodic theory of G-spaces,” in: Actes Congr. Int. Math., 1970, Vol. 2, Paris (1971), pp. 921–924.Google Scholar
  602. 602.
    W. Parry, “Cocycles and velocity changes,” J. London Math. Soc.,5, No. 3, 511–516 (1972).Google Scholar
  603. 603.
    W. Parry, “Dynamical representations in nilmanifolds,” Comps. Math.,26, No. 2, 159–174 (1973).Google Scholar
  604. 604.
    W. Parry, “Notes on a posthumous paper by F. Hahn,” Isr. J. Math.,16, No. 1, 38–45 (1973).Google Scholar
  605. 605.
    W. Parry and P. Walter, “Minimal skew-product homeomorphisms and coalescence,” Compos. Math.,22, No. 3, 283–288 (1970).Google Scholar
  606. 606.
    W. Parry and P. Walter, “Endomorphisms of a Lebesgue space,” Bull. Am. Math. Soc.,78, No. 2, 272–276 (1972).Google Scholar
  607. 607.
    O. Pazzis, Time Evolution Problem in Classical Statistical Mechanics and the Wind Tree Model, Cargue Lect. in Physics, Vol. 4, 1970.Google Scholar
  608. 608.
    O. Pazzis, “Ergodic properties of a semi-infinite hard rods system,” Comm. Math. Phys.,22, No. 2, 121–132 (1971).Google Scholar
  609. 609.
    R. Peleg, “Weak disjointness of transformation groups,” Proc. Am. Math. Soc.,33, No. 1, 165–170 (1972).Google Scholar
  610. 610.
    K. Petersen, “Spectra of induced transformation,” Lect. Notes Math.,318, 226–230 (1973).Google Scholar
  611. 611.
    J. F. Plante, “Anosov flows,” Am. J. Math.,94, No. 3, 729–754 (1972).Google Scholar
  612. 612.
    R. Potacký, “About the isomrophism of Bernoulli schemes,” Acta Fac. Rerum Natur. Univ. Comen. Math.,26, 33–38 (1972).Google Scholar
  613. 613.
    O. Pugh and M. Shub, “Ergodic elements of ergodic actions,” Compos. Math.,23, No. 1, 115–122 (1971).Google Scholar
  614. 614.
    C. Pugh and M. Shub, “Ergodicity of Anosov actions,” Invent. Math.,15, No. 1, 1–23 (1972).Google Scholar
  615. 615.
    M. Rajagopalan and B. Schreiber, “Ergodic automorphisms and affine transformations,” Proc. Jap. Acad.,46, No. 7, 633–636 (1970).Google Scholar
  616. 616.
    M. Rajagopalan and B. Schreiber, “Ergodic automorphisms and affine transformations of locally compact groups,” Pacific J. Math.,38, No. 1, 167–176 (1971).Google Scholar
  617. 617.
    A. Ramsay, “Virtual groups and group actions,” Adv. Math.,6, No. 3, 253–322 (1971).Google Scholar
  618. 618.
    M. Ratner, “The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature,” Isr. J. Math.,16, No. 2, 181–197 (1973).Google Scholar
  619. 619.
    M. Ratner, “Markov partitions for Anosov flows on n-dimensional manifolds,” Isr. J. Math.,15, No. 1, 92–114 (1973).Google Scholar
  620. 620.
    M. Ratner, “Anosov flows with Gibbs measures are also Bernoullian,” Isr. J. Math.,17, No. 4, 380–391 (1974).Google Scholar
  621. 621.
    A. Regnier, “Théorèmes erdogiques individuels purement topologiques,” Ann. Inst. H. Poincaré,B6, No. 3, 271–280 (1970).Google Scholar
  622. 622.
    P. F. Renaud, “General ergodic theorems for locally compact groups,” Am. J. Math.,93, No. 1, 52–64 (1971).Google Scholar
  623. 623.
    P. Révész, “On the Random Ergodic Theorems,” Mat. Inst. Aarhus Univ. Aarhus (1961).Google Scholar
  624. 624.
    J. B. Robertson, “A spectral representation of the states of measure preserving transformation,” Z. Wahrascheinlichkeitstheor. und Verw. Geb.,27, No. 3, 185–194 (1973).Google Scholar
  625. 625.
    J. B. Robertson, “The mixing properties of certain processes related to Markov chains,” Math. Syst. Theory,7, No. 1, 39–43 (1973).Google Scholar
  626. 626.
    D. Robinson and D. Ruelle, “Mean entropy of states in classical statistical mechanics,” Comm. Math. Phys.,5, 228–300 (1967).Google Scholar
  627. 627.
    F. Rublic, “Abstract formulation of the individual ergodic theorem,” Mat. Čas.,23, No. 3, 199–208 (1973).Google Scholar
  628. 628.
    S. M. Rudolfer, “On characterizations of mixing properties of measure-preserving transformations,” Math. Syst. Theory,3, No. 1, 86–94 (1969).Google Scholar
  629. 629.
    S. M. Rudolfer, “Some metric invariants for Markov shifts,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,15, No. 3, 202–207 (1970).Google Scholar
  630. 630.
    S. M. Rudolfer, “Ergodic properties of linear fractional transformations mod one,” Proc. London Math. Soc.,23, No. 3, 515–531 (1971).Google Scholar
  631. 631.
    S. M. Rudolfer, “The independence properties of certain number-theoretic endomorphisms,” in: Proc. Sympos. on Topology, Dynamics and Ergodic Theory, Univ. of Kentucky, Lexington (1971), pp. 68–69.Google Scholar
  632. 632.
    S. M. Rudolfer and K. M. Wilkinson, “A number-theoretic class of weak Bernoulli transformations,” Math. Syst. Theory,7, No. 1, 14–24 (1973).Google Scholar
  633. 633.
    D. Ruelle, “Statistical mechanics of a one-dimensional lattice gas,” Commun. Math. Phys.,9, 267–278 (1968).Google Scholar
  634. 634.
    D. Ruelle, “Statistical mechanics on a compact set with Zυ action satisfying expansiveness and specification,” Bull. Amer. Math. Soc.,78, No. 6, 988–991 (1972).Google Scholar
  635. 635.
    D. Ruelle, “Statistical mechanics on a compact set with Zυ action satisfying expansiveness and specification,” Trans. Amer. Math. Soc.,185, 237–253 (1973).Google Scholar
  636. 636.
    D. Ruelle, “A measure associated with axiom A attractors,” Preprint (1970).Google Scholar
  637. 637.
    U. Sachdeva, “On category of mixing in infinite measure spaces,” Math. Syst. Theory,5, No. 4, 319–330 (1971).Google Scholar
  638. 638.
    R. Sacksteder, “Strongly mixing transformations,” in: Proc. Symp. in Pure Math., Global Analysis, Vol. 14, (1970), pp. 245–252.Google Scholar
  639. 639.
    A. Salesky, “On induced transformations of Bernoulli shifts,” Math. Syst. Theory,7, No. 1, 83–96 (1973).Google Scholar
  640. 640.
    Ryotaro Sato, “Notes on generalized commuting properties of skew product transformations,” Proc. Jap. Acad.,45, No. 5, 368–373 (1970).Google Scholar
  641. 641.
    Ryotaro Sato, “Continous affine transformations of locally compact disconnected groups,” Proc. Jap. Acad.,46, No. 2, 143–146 (1970).Google Scholar
  642. 642.
    Ryotaro Sato, “On locally compact Abelian groups with dense orbits under continuous affine transformations,” Proc. Jap. Acad.,46, No. 2, 147–150 (1970).Google Scholar
  643. 643.
    Ryotaro Sato, “Properties of ergodic affine transformations of locally compact groups,″ I,” Proc. Jap. Acad.,46, No. 3, 231–235 (1970).Google Scholar
  644. 644.
    Ryotaro Sato, “Properties of ergodic affine transformations of locally compact groups. II,” Proc. Jap. Acad.,46, No. 3, 236–238 (1970).Google Scholar
  645. 645.
    Ryotaro Sato, “On the individual ergodic theorem for positive operators,” Proc. Am. Math. Soc.,36, No. 2, 456–458 (1972).Google Scholar
  646. 646.
    Ryotaro Sato, “On the individual ergodic theorem for subsequences,” Stud. Math. (PRL),45, No. 1, 31–35 (1973).Google Scholar
  647. 647.
    Ryotaro Sato, “On a general ratio ergodic theorem with weighted averages,” Proc. Am. Math. Soc.,35, No. 1, 177–178 (1972).Google Scholar
  648. 648.
    Ryotaro Sato, “Local ergodic properties of Lp-operator semigroups,” Comment. Math. Univ. Carol.,14, No. 1, 177–181 (1973).Google Scholar
  649. 649.
    Ryotaro Sato, “On a decomposition of transformations in infinite measure spaces,” Pacific J. Math.,44, No. 2, 733–738 (1973).Google Scholar
  650. 650.
    Ryotaro Sato, “Abel-ergodic theorems for subsequences,” Pacific J. Math.,47, No. 1, 233–242 (1973).Google Scholar
  651. 651.
    Ryotaro Sato, “Ergodic theorems for semi-groups inL p, 1<p<∞,” Tohoku Math. J.,26, No. 1, 73–76 (1974).Google Scholar
  652. 652.
    B. Schmitt, “Théoréme ergodique ponctuel pour les suites uniformes,” Ann. Inst. H. Poincaré,B8, No. 4, 387–394 (1972) (1973).Google Scholar
  653. 653.
    C. Sobrdone, “Sulle misure invariant,” Ric. Mat.,21, No. 2, 244–251 (1972).Google Scholar
  654. 654.
    T. Schwartzbauer, “Automorphisms that admit an approximation by periodic transformations,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,15, No. 3, 239–248 (1970).Google Scholar
  655. 655.
    T. Schwartzbauer, “A general method for approximating measure preserving transformations,” Proc. Am. Math. Soc.,24, No. 3, 643–648 (1970).Google Scholar
  656. 656.
    T. Schwartzbauer, “Entropy and approximation of measure-preserving transformations,” Pacific J. Math.,43, No. 3, 753–764 (1972).Google Scholar
  657. 657.
    T. Schwartzbauer, “Approximation of measure preserving transformations,” Math. Syst. Theory,6, No. 4, 312–323 (1973).Google Scholar
  658. 658.
    M. Sears, “The automorphism of the shift dynamical system are relatively sparse,” Math. Syst. Theory,5, No. 3, 228–231 (1971).Google Scholar
  659. 659.
    P. Shields, “Cutting and independent stacking of intervals,” Math. Syst. Theory,7, No. 1, 1–4 (1973).Google Scholar
  660. 660.
    T. Shimano, “Random recurrence time in ergodic theory,” Tohoku Math. J.,23, No. 2, 273–287 (1971).Google Scholar
  661. 661.
    I. Shikawa, “Ergodic properties of piecewise linear transformations,” Proc. Jap. Acad.46, No. 10, 1122–1125 (1970).Google Scholar
  662. 662.
    H. Shirakawa, “The construction of a special flow for a geodesic flow on a surface of constant negative curvature,” Sci. Repts. Tokyo Kyoiku Daigaku,A11, No. 286–312, 201–203 (1972).Google Scholar
  663. 663.
    H. Shirakawa, “A proof of strongly mixing property of a horocycle flow,” Sci. Repts. Tokyo Keoiku Daigaku,A11, No. 286–312, 204–207 (1972).Google Scholar
  664. 664.
    M. Shub, “Endomorphisms of compact differentiable manifolds,” Am. J. Math.,91 175–199 (1969).Google Scholar
  665. 665.
    M. Shub, “Dynamical systems filtrations, and entropy,” Bull. Am. Math. Soc.,80, No. 1, 27–41 (1974).Google Scholar
  666. 666.
    K. Sigmund, “Generic properties of invariant measures for axiom A-diffeomorphisms,” Invent. Math.,11, No. 2, 99–109 (1970).Google Scholar
  667. 667.
    K. Sigmund, “Ergodic averages for axiom A diffeomorphisms,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,20, No. 4, 319–324 (1971).Google Scholar
  668. 668.
    K. Sigmund, “On the space of invariant measures for hyperbolic flows,” Am. J. Math.,94, No. 1, 31–37 (1972).Google Scholar
  669. 669.
    K. Sigmund, “On mixing measures for axiom A diffeomorphisms,” Proc. Am. Math. Soc.,36, No. 2, 497–504 (1972).Google Scholar
  670. 670.
    Ya. G. Sinai (J. G. Sinai), “Wyklady o uktadach dynamicznych cześc I,” Wydow. Univ. Wars. Warszawn., No. 1–3 (1969).Google Scholar
  671. 671.
    Ya. G. Sinai (J. G. Sinai), “Measures invariantes desy-systemes,” in: Actes Congrs Int. Math., 1970, Vol. 2, (Paris) (1971), pp. 929–940.Google Scholar
  672. 672.
    Ya. G. Sinai (J. G. Sinai), Ergodic Theory. The Boltzmann Equation, Springer-Verlag, Wien-New York (1973), pp. 575–608.Google Scholar
  673. 673.
    Ya. G. Sinai (J. G. Sinai), Theory of Dynamical Systems. Part I, Lecture Notes Ser. Mat. Inst. Aarhus Univ. (1970), No. 23.Google Scholar
  674. 674.
    R. Sine, “A mean ergodic theorem,” Proc. Am. Math. Soc.,24, No. 3, 438–439 (1970).Google Scholar
  675. 675.
    S. Smale, “Differential dynamical systems,” Bull. Am. Math. Soc.,73, 747–817 (1967).Google Scholar
  676. 676.
    S. Smale, “Diffeomorphisms with many periodic points,” in: Differential and Combinatorial Topology, Princeton Univ. Press (1965), pp. 63–80.Google Scholar
  677. 677.
    M. Smorodinsky, “Singular measures and Hausdorff measures,” Isr. J. Math.,7, No. 3, 203–206 (1969).Google Scholar
  678. 678.
    M. Smorodinsky, “Ergodic theory, entropy,” Lect. Notes Math.,214 (1971).Google Scholar
  679. 679.
    M. Smorodinsky, “A partition on a Bernoulli shift which is not weakly Bernoulli,” Math. Syst. Theor,5, No. 3, 201–203 (1971).Google Scholar
  680. 680.
    M. Smorodinsky, “On Ornstein's isomorphism theorem for Bernoulli shifts,” Adv. Math.,9, No. 1, 1–9 (1970).Google Scholar
  681. 681.
    M. Smorodinsky, “Probabilistic properties of number expansions,” Var. Publs. Ser. Mat. Inst. Aarhus Univ., No. 21, 191–196 (1972).Google Scholar
  682. 682.
    M. Smorodinsky, “β-automorphisms are Bernoulli,” Acta Math. Acad. Sci. Hung.,24, Nos. 3–4, 273–278 (1973).Google Scholar
  683. 683.
    J. R. Sorenson, Existence of Measures that Are Invariant Under a Semigroup of Transformations, Doct. Diss. Purdue Univ., 1966, Dissert. Abstrs.,B27, No. 11, 4036 (1967).Google Scholar
  684. 684.
    G. H. Stein, “Entropy and density,” Proc. Am. Math. Soc.,28, No. 2, 505–508 (1971).Google Scholar
  685. 685.
    A. M. Stepin, “Les spectres des systèmes dynamiques,” in: Actes Congr. Int. Math., 1970, Vol. 2, Paris (1971), pp. 941–946.Google Scholar
  686. 686.
    J. M. Strelcyn, “Stricte ergodicity des flots speciaux,” C.R. Acad. Sci.,271, No. 18, A903-A905 (1970).Google Scholar
  687. 687.
    W. Szlenk, “Some spectral aspects of topological dynamical systems,” Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. et Phys.,21, No. 4, 313–316 (1973).Google Scholar
  688. 688.
    W. Takahashi, “Invariant functions for amenable semigroups of positive contractions on L1,” Kodai Math. Semin. Repts.,23, No. 2, 131–143 (1971).Google Scholar
  689. 689.
    W. Takahashi, “Ergodic theorems for amenable semigroups of positive contractions of L',” Sci. Repts. Yokohama Nat. Univ., Sec. 1, No. 19, 5–11 (1972).Google Scholar
  690. 690.
    Ya. Takahshi, “Isomorphisms of β-automorphisms to Markov automrophisms,” Osaka J. Math.,10, 175–184 (1973).Google Scholar
  691. 691.
    Y. Takahashi, “Markov semigroups with simplest intereaction. I,” Proc. Jap. Acad.,47, Suppl. No. 2, 974–978 (1971).Google Scholar
  692. 692.
    Y. Takahashi, “β-transformations and symbolic dynamics,” Lect. Notes Math.,330, 455–464 (1973).Google Scholar
  693. 693.
    T. R. Terrel, “Local ergodic theorems for N-parameter semigroups of operators,” Lect. Notes Math.,160, 262–278 (1970).Google Scholar
  694. 694.
    T. R. Terrel, “The local ergodic theorem and semigroups of nonpositive operators,” J. Funct. Anal.,10, No. 4, 424–429 (1972).Google Scholar
  695. 695.
    T. R. Terrel, “A ratio ergodic theorem for operator semigroups,” Boll. Unione Mat. Ital.,6, No. 2, 175–180 (1972).Google Scholar
  696. 696.
    R. K. Thomas, “Metric properties of transformations of G-spaces,” Trans. Am. Math. Soc.,160, 103–117 (1971).Google Scholar
  697. 697.
    R. K. Thomas, “The addition theorem for the entropy of transformations of G-spaces,” Trans. Am. Math. Soc.,160, 119–130 (1971).Google Scholar
  698. 698.
    R. K. Thomas, “On affine transformations of locally compact groups,” J. London Math. Soc.,4, No. 4, 599–610 (1972).Google Scholar
  699. 699.
    J.-P. Thouvenot, “Convergence en moyenne de l'information pour l'action de Z2,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,24, No. 2, 135–137 (1972).Google Scholar
  700. 700.
    H. Totoki, “Time changes of flows,” Mem. Fac. Sci. Kyushu Univ.,A20, No. 1, 27–55 (1966).Google Scholar
  701. 701.
    H. Totoki, “On a class of special flows,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,15, No. 2, 157–167 (1970).Google Scholar
  702. 702.
    H. Totoki, Ergodic Theory, Lect. Notes Sec. Mat. Inst. Aarhus Univ., No. 14 (1970).Google Scholar
  703. 703.
    S. Tsurumi, “On random ergodic theorems for a random quasisemigroup of linear contractions,” Proc. Jap. Acad.,48, No. 3, 149–152 (1972).Google Scholar
  704. 704.
    W. A. Veech, “Strict ergodicity in zero-dimensional dynamical systems and the Kronecker-Weyl theorem mod 2,” Trans. Am. Math. Soc.,140, June, 1–33 (1969).Google Scholar
  705. 705.
    W. A. Veech, “Properties of minimal functions on Abelian groups,” Am. J. Math.,91, No. 2, 415–440 (1969).Google Scholar
  706. 706.
    W. A. Veech, “A fixed point theorem-free approach to weak almost periodicity,” Trans. Am. Math. Soc.,177, March, 353–362 (1973).Google Scholar
  707. 707.
    P. Walters, “On the relationship between zero entropy and quasi-discrete spectrum for affine transformations,” Proc. Am Math. Soc.,18, No. 4, 661–667 (1967).Google Scholar
  708. 708.
    P. Walters, “Roots on n∶1 measure-preserving transformations,” J. London Math. Soc.,44, No. 1, 7–14 (1969).Google Scholar
  709. 709.
    P. Walterns, “Topological conjugacy of affine transformations of compact Abelian groups,” Trans. Am. Math. Soc.,140, 95–107 (1969).Google Scholar
  710. 710.
    P. Walters, “Conjugacy properties of affine transformations of nilmanifolds,” Math. Syst. Theory,4, No. 4, 327–333 (1970).Google Scholar
  711. 711.
    P. Walters, “Some invariant σ-algebras for measure preserving transformations,” Trans. Am. Math. Soc.,163, 357–368 (1972).Google Scholar
  712. 712.
    P. Walters, “Some results on the classification of noninvertible measure preserving transformations,” Lect. Notes Math.,318, 266–276 (1973).Google Scholar
  713. 713.
    P. Walters, “Some transformations having a unique measure with maximal entropy,” Proc. London Math. Soc.,28, No. 3, 500–516 (1974).Google Scholar
  714. 714.
    P. Walters, “A variational principle for the pressure of continuous transformations,” Am. J. Math. (1975).Google Scholar
  715. 715.
    M. S. Walterman, “Some ergodic properties of multidimensional F-expansions,” Z. Wahrscheinlichkeitstheor. und Verw. Geb.,16, No. 2, 77–103 (1970).Google Scholar
  716. 716.
    M. S. Walterman, “Sur la reciproque d'un résultat de Furstenberg,” C.R. Acad. Sci.,272, No. 1, A56-A58 (1970).Google Scholar
  717. 717.
    B. Weiss, “Intrisically ergodic systems,” Bull. Am. Math. Soc.,76, No. 6, 1266–1269 (1970).Google Scholar
  718. 718.
    B. Weiss, “Topological transitivity and ergodic measures,” Math. Syst. Theory,5, No. 1, 71–75 (1971).Google Scholar
  719. 719.
    B. Weiss, “The isomorphism problem in ergodic theory,” Bull. Am. Math. Soc.,78, No. 5, 668–684 (1972).Google Scholar
  720. 720.
    B. Weiss, “Groups of measure preserving transformations,” Lect. Notes Math.,318, 277–280 (1973).Google Scholar
  721. 721.
    B. Weiss, “Subshifts of finite type and sofic systems,” Monatsh. Math.,77, No. 5, 462–474 (1973).Google Scholar
  722. 722.
    M. D. Weiss, “Topological entropy of Chebyshev polynomials and related real mappings,” J. Math. Anal. and Appl.,43, No. 3, 816–822 (1973).Google Scholar
  723. 723.
    K. E. Westerbeck and Ta-Sun Wu, “The equicontinuous structure relation for ergodic Abelian transformation groups,” Ill. J. Math.,17, No. 3, 421–441 (1973).Google Scholar
  724. 724.
    Y. Yokoi, “Dynamical systems with ergodic partitions,” Proc. Jap. Acad.,47, No. 2, 160–162 (1971).Google Scholar
  725. 725.
    L. Zsido, “Sperante conditionate si teorema lui Sinai,” Studii si Cercetari Mat.,20, 1045–1111 (1968).Google Scholar
  726. 726.
    L. Zsido, “Sur les processus fortement stationaires ergodiques,” C. R. Acad. Sci.,267, 169–170 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • A. B. Katok
  • Ya. G. Sinai
  • A. M. Stepin

There are no affiliations available

Personalised recommendations