Journal of Geometry

, Volume 55, Issue 1–2, pp 141–161 | Cite as

Cubic curves in the triangle plane

  • Guido M. Pinkernell


The subject of this paper are two pencils of cubic curves that are the result of certain geometrical constructions in the triangle plane. One of them turns out to be the probably most significant pencil of anallagmatic cubics that are associated with triangle geometry. Both contain virtually all important single cubics, and other well known curves appear closely connected with them.


Geometrical Construction Triangle Plane Triangle Geometry Single Cubics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.A. BENNETT: New Properties of an Orthocentric System of Triangles.Amer. Math. Monthly 33 (1926), 460–462.Google Scholar
  2. [2]
    B.H. BROWN: A Theorem on Isogonal Tetrahedra.Amer. Math. Monthly 31 (1924), 371–375.Google Scholar
  3. [3]
    B.H. BROWN: The 21-point Cubic.Amer. Math. Monthly 32 (1925), 110–115.Google Scholar
  4. [4]
    J. CASEY:A Treatise on the Analytic Geometry of the Point, Line, Circle and Conic Sections, Dublin 1895.Google Scholar
  5. [5]
    H.M. CUNDY, C.F. PARRY: Some Cubic Curves associated with a Triangle. (To appear in theJ. of Geom.)Google Scholar
  6. [6]
    R. DEAUX: Sur les cubiques de Darboux et de Lucas.Mathesis 38 (1924), 430.Google Scholar
  7. [7]
    R.H. EDDY, R. FRITSCH: The conics of Ludwig Kiepert. A Comprehensive Lesson in the Geometry of the Triangle.Math. Mag. 67 (1994).Google Scholar
  8. [8]
    A. EMCH: On Surfaces and Curves which are invariant under Involutory Cremona Transformations.Amer. J. Math. 45 (1926), 21–44.Google Scholar
  9. [9]
    A. EMCH: Properties of Plane Elliptic Cubics and Pencils of Cubics derived by the Quadratic Transformation.Monatsh. Math. 49 (1940), 55–63.Google Scholar
  10. [10]
    J.M. FELD: Configurations inscriptible in a Plane Cubic Curve.Amer. Math. Monthly 43 (1936), 549.Google Scholar
  11. [11]
    J.M. FELD: Plane Cubics invariant under Quadratic Transformations.Tôhoku Math. J. 43 (1937), 299–303.Google Scholar
  12. [12]
    J.M. FELD: Counterpoints and associated Cubic Curves.Scripta Mathematica 7 (1940). 113–118.Google Scholar
  13. [13]
    J.M. FELD: Anallagmatic Cubics.Amer. Math. Monthly 55 (1948), 635–636.Google Scholar
  14. [14]
    W. GALLATLY:The Modern Geometry of the Triangle. 2nd ed., London 1913.Google Scholar
  15. [15]
    F.C. GENRTY: Three Cubic Loci.Amer. Math. Monthly 55 (1948), 633–635.Google Scholar
  16. [16]
    R. GOORMAGHTIGH: Sur une Propriete des Points de Brocard.Gazeta Matematica 35 (1930), 321–322.Google Scholar
  17. [17]
    R. GOORMAGHTIGH: On McCay's Cubic.Amer. Math. Monthly 43 (1936), 92.Google Scholar
  18. [18]
    R. GOORMAGHTIGH: On Anallagmatic Cubics.Amer. Math. Monthly 55 (1948), 636.Google Scholar
  19. [19]
    H. HILTON:Plane Algebraic Curves, 2nd edition, Oxford University Press, London 1932.Google Scholar
  20. [20]
    C. KIMBERLING: Central Points and Central Lines in the Plane of a Triangle.Math. Mag. 67 (1994).Google Scholar
  21. [21]
    T.W. MOORE, J.H. NELLEY: The Circular Cubic on Twenty-one Points of a Triangle.Amer. Math. Monthly 32 (1925), 241–246.Google Scholar
  22. [22]
    F. MORLEY: Note on Neuberg's Cubic Curve.Amer. Math. Monthly 32 (1925), 407–411.Google Scholar
  23. [23]
    J.R. MUSSELMAN: On the McCay Cubic.Amer. Math. Monthly 43 (1936), 91.Google Scholar
  24. [24]
    J.R. MUSSELMAN: Some Loci connected with the Triangle.Amer. Math. Monthly 47 (1940), 354.Google Scholar
  25. [25]
    J.B.J. NEUBERG: Memoire sur le Tetraedre. Supplement toMathesis 5 (1885).Google Scholar
  26. [26]
    J.B.J. NEUBERG: Bibliographie du Triangle et du Tetraedre.Mathesis (1923).Google Scholar
  27. [27]
    C.E. NOBLE: An Anallagmatic Cubic.Amer. Math. Monthly 55 (1948), 7–14.Google Scholar
  28. [28]
    K. OGURA: Invariant Cubics for Isogonal Transformations in the Geometry of the Triangle.Tôhoku Math. J. 4 (1913), 132.Google Scholar
  29. [29]
    J.F. RIGBY: Triangle Centres, and Cubic Curves associated with a Triangle (1993, unpublished).Google Scholar
  30. [30]
    O.M. THALBERG: Application of the Theorem of Residuation to the 21-point Cubic.Amer. Math. Monthly 32 (1925), 412–414.Google Scholar
  31. [31]
    H.L. TRACHTENBERG: A new Cubic connected with the Triangle.Math. Gaz. 3 (1906), 288–291.Google Scholar
  32. [32]
    J.H. WEAVER: On Isogonal Points.Amer. Math. Monthly 42 (1935), 496–499.Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • Guido M. Pinkernell
    • 1
  1. 1.School of MathematicsUniversity of Wales College of CardiffCardiffWales, UK

Personalised recommendations