Advertisement

Archiv der Mathematik

, Volume 33, Issue 1, pp 546–553 | Cite as

A note on artinian rings

  • Dinh Van Huynh
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dinh Van Huynh, Über artinsche Ringe. Math. Nachr.86, 187–194 (1978).Google Scholar
  2. [2]
    Dinh Van Huynh, Some conditions for the existence of a right identity in a ring. Ann. Univ. Sci. Budapest. Eötvös. Sect. Math. 22 (1979) (to appear).Google Scholar
  3. [3]
    Dinh Van Huynh, Über linear kompakte Ringe. Acta Math. Acad. Sci. Hung.36 (1980) (to appear).Google Scholar
  4. [4]
    Dinh Van Huynh, Artinsche Moduln über artinschen Ringen. Unpublished.Google Scholar
  5. [5]
    L. Fuchs andT. Szele, On artinian rings. Acta Sci. Math. Szeged17, 30–40 (1956).Google Scholar
  6. [6]
    N.Jacobson, Structure of rings. Providence 1964.Google Scholar
  7. [7]
    A.Kertész, Vorlesungen über artinsche Ringe. Leipzig-Budapest 1968.Google Scholar
  8. [8]
    A.Kertész, Ein Radikalbegriff für Moduln. Colloquia Math. Soc. J. Bolyai, 6. Rings. Modules and Radicals, 1973, 255–257.Google Scholar
  9. [9]
    A. Kebtész andA. Widiger, Artinsche Ringe mit artinschem Radikal. J. reine angew. Math.242, 8–15 (1970).Google Scholar
  10. [10]
    I. Murase andH. Tominaga, On powers of artinian rings without identity. Math. J. Okayama Univ.20, 131–140 (1978).Google Scholar
  11. [11]
    F. Szász, Über artinsche Ringe. Bull. Acad. Polon. Sci. ser. Sci. Math. Astronom. Phys.11, 351–354 (1963).Google Scholar
  12. [12]
    F. Szász, Notes on Modules III. Proc. Japan Acad.46, 354–357 (1970).Google Scholar
  13. [13]
    F. Szász, Rings, which are radical modules. Math. Japan.16, 103–104 (1971).Google Scholar
  14. [14]
    H.Tominaga and I.Murase, A study on artinian rings. Shing Hua J. Math. Appl. (to appear).Google Scholar
  15. [15]
    A.Widiger, A general decomposition theorem for artinian rings (to appear).Google Scholar
  16. [16]
    A.Widiger, Decompositions for alternative artinian rings (to appear).Google Scholar

Copyright information

© Birkhäuser Verlag 1979

Authors and Affiliations

  • Dinh Van Huynh
    • 1
  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations