Advertisement

Integral Equations and Operator Theory

, Volume 21, Issue 4, pp 383–429 | Cite as

m-Isometric transformations of Hilbert space, I

  • Jim Agler
  • Mark Stankus
Article

AMS subject classification

31C25 46E20 46F05 46F10 46F20 47A20 47A45 47A55 47B3 47N30 60G99 60K99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ag1] Agler, J.,Subjordan operators, Thesis, Indiana University, 1980.Google Scholar
  2. [Ag2] Agler, J., “The Arveson extension theorem and coanalytic models”,Integral Equations and Operator Theory 5 (1982), 608–631.Google Scholar
  3. [Ag3] Agler, J.,An Abstract Approach to Model Theory, Surveys of some recent results in operator theory Vol2, Pitman Research Notes in Mathematics Series; ISSN 0269-3674;192, 1–24.Google Scholar
  4. [Ag4] Agler, J., “A Disconjugacy Theorem for Toeplitz Operators”,American Journal of Mathematics,112(1990), 1–14.Google Scholar
  5. [Ag5] Agler, J., “Sub-Jordan Operators Bishop's Theorem, Spectral Inclusion and Spectral Sets”,J. Operator Theory 7(1982), 373–395.Google Scholar
  6. [Ag6] Agler, J., “Hypercontractions and Subnormality”,J. Operator Theory 13(1985), 203–217.Google Scholar
  7. [Ag7] Agler, J., “Rational Dilation of an annulus”,Annals of Mathematics,121(1985), 537–563.Google Scholar
  8. [Arv1] Arveson, W.B., “Subalgebras ofC *-algebras”,Acta Math. 123(1969), 141–224.Google Scholar
  9. [Arv2] Arveson, W.B., “Subalgebras ofC *-algebras II”,Acta Math. 128(1972), 271–308.Google Scholar
  10. [B] Beurling, A., “On two problems concerning Linear transformations in Hilbert space”,Acta. Math. 81 (1949), 239–255.Google Scholar
  11. [Ber-S] Berger, C.A., Shaw, B.L., “Self-commutators of multicyclic hyponormal operators are always trace class”, B.A.M.S.,79 (1973), 1193–1199.Google Scholar
  12. [Bir-S] Birman, M. S., and Solomjak, M. Z.,Spectral Theory of self-adjoint Operators in Hilbert Space, D. Reidel Publishing Company, Dordrecht/Boston/Lancaster/Tokyo, 1986.Google Scholar
  13. [Br-R] de Branges, L., Rovnyak, J.,Square Summable Power Series, New York, Holt, Rinehart and Winston, 1966.Google Scholar
  14. [C] Conway, John B.,A Course in Functional Analysis, New York/Berlin/Heidelberg/Tokyo, Springer-Verlag, 1985.Google Scholar
  15. [Ca] Calkin, J.W., “Two-sided ideals and congruences in the ring of bounded operators in Hilbert space”,Ann. of Math. (2)42(1941), 839–873.Google Scholar
  16. [C-F] Colojoară, I., Foias C.,Theory of Generalized spectral Operators New York, Gordon and Breach, 1968.Google Scholar
  17. [C-P] Curto, R.E. and Putinar, M., “Existence of non-subnormal polynomially hyponormal operators”, B.A.M.S.,25(1991) #2, 373–378.Google Scholar
  18. [F] Fillmore, P. A.,Notes on operator theory, New York, Van Nostrand, 1970.Google Scholar
  19. [Fr] Franks, E.,Polynomially subnormal operator tuples, Thesis, University of California, San Diego, 1991.Google Scholar
  20. [Ha] Halmos, P.R.,A Hilbert space problem book, Princeton, D. Van Nostrand, 1970.Google Scholar
  21. [H1] Helton, J. W., “Operators with a representation as multiplication byx on a Sobolev space”,Colloquia Math. Soc. Janos Bolyai 5, Hilbert Space Operators, Tihany, Hungary (1970), 279–287.Google Scholar
  22. [H2] Helton, J. W., “Infinite dimensional Jordan operators and Sturm-Liouville conjugate point theory”,Trans. Amer. Math. Soc. 170 (1972), 305–331.Google Scholar
  23. [H3] Helton, J. W.,Operator Theory, analytic functions, matrices, and electrical engineering, Conference Board of the Mathematical Sciences by the American Mathematical Society, 1987.Google Scholar
  24. [Hel] Helson, H.,Lectures on Invariant Subspaces, New York, Academic Press, 1964.Google Scholar
  25. [M1] McCullough, S.A.,3-isometries, Thesis, University of California, San Diego, 1987.Google Scholar
  26. [M2] McCullough, S.A., “SubBrownian Operators”,J. Operator Theory,22(1989) 2, 291–305.Google Scholar
  27. [M-G] Boutet de Monvel and V. Guillemin,The spectral theory of Toeplitz operators, Princeton University Press, Princeton N.J., University of Tokyo Press, Tokyo, 1981.Google Scholar
  28. [N] Nielsen, O.A., “Direct Integral Theory”,Lecture notes in pure and applied mathematics, vol.61, Marcel Dekker, Inc, New York and Basel, 1980.Google Scholar
  29. [P] Putnam, C.R., “An inequality for the area of hyponormal spectra”,Math. Z.,116(1970), 323–330.Google Scholar
  30. [R1] Richter, S., “Invariant subspaces of the Dirichlet shift”,J. reine agnew. Math. 386 (1988), 205–220.Google Scholar
  31. [R2] Richter, S., “A representation theorem for cyclic analytic two-isometries”,Trans. Amer. Math. Soc., to appear.Google Scholar
  32. [Sa] Sarason, D., “Doubly shift-invariant spaces inH 2”,J. Operator Theory 16 (1986), 75–97.Google Scholar
  33. [Steg] Stegenga, D.A., “Multipliers of Dirichlet space”, Ill.Jour. of Math. 24(1980), 113–139.Google Scholar
  34. [St] Stankus, M.,Isosymmetric Linear Transformations On Complex Hilbert Space, Thesis, University of California, San Diego, 1993.Google Scholar
  35. [Sti] Stinespring, W.F., “Positive functions onC *-algebras”, P.A.M.S.6(1955), 211–216.Google Scholar
  36. [Sz.-N,F] Sz.-Nagy. Foias, C.,Harmonic analysis of operators in Hilbert space, North Holland, Amsterdam, 1970.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Jim Agler
    • 1
  • Mark Stankus
    • 1
  1. 1.Department of MathematicsUniv. Of Calif.San Diego, La JollaUSA

Personalised recommendations