Communications in Mathematical Physics

, Volume 64, Issue 3, pp 211–232 | Cite as

The dynamical degrees of freedom in spatially homogeneous cosmology

  • Robert T. Jantzen
Article

Abstract

The true analogues of superspace and conformal superspace for spatially homogeneous cosmology are introduced and discussed in relation to the kinematics of the evolution of Cauchy data from a spatially homogeneous initial value surface using a spatially homogeneous lapse function. Having fixed the slicing of spatially homogeneous spacetimes to be the natural one, an obvious restriction on the freedom of choice of the shift vector field occurs, and its relation to the three-dimensional diffeomorphism gauge group of the problem is explained. In this context the minimal distortion shift equation of Smarr and York naturally arises. Finally these ideas are used to simplify the dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Warner, F.W.: Foundations of differentiable manifolds and Lie groups. Glenview, Ill.: Scott, Foresman and Co. 1971; Sagle A.A., Walde, R.E.: Introduction to Lie groups and Lie algebras. New York: Academic Press 1973; Herman, R.: Differential geometry and the calculus of variations. New York: Academic Press 1968Google Scholar
  2. 2.
    Fischer, A.E., Marsden, J.E.: J. Math. Phys.13, 546 (1972)Google Scholar
  3. 3.
    Misner, C.W.: Minisuperspace. In: Magic without magic. Klauder, J.R. (ed.). San Francisco: W.H. Freeman 1972Google Scholar
  4. 4.
    DeWitt, B.S.: Phys. Rev.160, 1113 (1967)Google Scholar
  5. 5.
    York, J.W., Jr.: Phys. Rev. Letters28, 1082 (1972): J. Math. Phys.14, 456 (1973)Google Scholar
  6. 6.
    Fischer, A.E.: The theory of superspace. In: Relativity. Carmeli, M., Fickler, S.I., Witten, L. (eds.). New York: Plenum 1970Google Scholar
  7. 7.
    Estabrook, F.B., Wahlquist, H.D., Behr, C.G.: J. Math. Phys.9, 497 (1968); Ellis, G.F.R., MacCallum, M.A.H.: Commun. math. Phys.12, 108 (1969)Google Scholar
  8. 8.
    Bianchi, L.: Lezioni sulla teoria dei gruppi finite di transformazioni, p. 550 (1918); Collected Works of Bianchi, Vol. 9, pp. 17–109: Sugli spazi a tre dimensioni che ammettono un gruppo continuo movimentiGoogle Scholar
  9. 9.
    Misner, C.W.: Phys. Rev.186, 1319 (1969)Google Scholar
  10. 10.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. San Francisco: W.H. Freeman 1973Google Scholar
  11. 11.
    Smarr, L., York, J.W., Jr.: Kinematical conditions in the construction of a spacetime. Phys. Rev. D (to appear)Google Scholar
  12. 12.
    Jantzen, R.T.: Spatially homogeneous cosmology: Background and dynamics. In: Relativistic cosmology and Bianchi universes. Ruffini, R. (ed.). San Francisco: W.H. Freeman 1979Google Scholar
  13. 13.
    Whittaker, E.T.: A treatise on analytical dynamics. Cambridge: Cambridge University Press 1965Google Scholar
  14. 14.
    Ryan, M.P., Jr., Shepley, L.C.: Homogeneous relativistic cosmologies. Princeton, NJ: Princeton University Press 1975; Ryan, M.P., Jr.: J. Math. Phys.15, 812 (1974)Google Scholar
  15. 15.
    Ryan, M.P., Jr.: Ann. Phys.65, 506 (1971);68, 541 (1971)Google Scholar
  16. 16.
    Moncrief, V.: J. Math. Phys.16, 493 (1975);17, 1893 (1976); Arms, J.: J. Math. Phys.18, 830 (1977)Google Scholar
  17. 17.
    Fischer, A.E., Marsden, J.E.: Symmetry breaking in general relativity. (to appear)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Robert T. Jantzen
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations