Advertisement

The Science of Nature

, Volume 78, Issue 7, pp 289–296 | Cite as

The nature of the redshift and directly observed quasar statistics

  • I. E. Segal
  • J. F. Nicoll
  • P. Wu
  • Z. Zhou
Article

Abstract

The nature of the cosmic redshift is one of the most fundamental questions in modern science. Hubble's discovery of the apparent Expansion of the Universe is derived from observations on a small number of galaxies at very low redshifts. Today, quasar redshifts have a range more than 1000 times greater than those in Hubble's sample, and represent more than 100 times as many objects. A recent comprehensive compilation of published measurements provides the basis for a study indicating that quasar observations are not in good agreement with the original predictions of the Expanding Universe theory, but are well fit by the predictions of an alternative theory having fewer adjustable parameters.

Keywords

Apparent Magnitude Large Redshift Selection Type Galaxy Sample Magnitude Cutoff 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmidt, M.: Nature197, 1040 (1963)CrossRefGoogle Scholar
  2. 2.
    Slipher, V. M.: Proc. Am. Phil. Soc.56, 503 (1917)Google Scholar
  3. 3.
    Friedmann, A.: Z. Physik10, 377 (1922)CrossRefGoogle Scholar
  4. 4.
    Lemaître, G.: Ann. Soc. Sci. Bruxelles47A, 49 (1927)Google Scholar
  5. 5.
    Arp, H.: Astrophys. J.239, 469 (1980)CrossRefGoogle Scholar
  6. 6.
    Boyle, B. J., et al.: M.N.R.A.S.227, 717 (1987)CrossRefGoogle Scholar
  7. 7.
    Schmidt, M., Green, R. F.: Astrophys. J.269, 352 (1983)CrossRefGoogle Scholar
  8. 8.
    Green, R. F., in: The Epoch of Galaxy Formation (ed. C. S. Frenk et al.). Dordrecht: Kluwer 1988Google Scholar
  9. 9.
    Burbidge, E. M., Burbidge, G.: Quasi-stellar objects. San Francisco: Freeman 1967Google Scholar
  10. 10.
    Burbidge, E. M.: Ann. Rev. Astron. Astrophys.5, 399 (1967)CrossRefGoogle Scholar
  11. 11.
    Segal, I. E.: Phys. Rev.D28, 2393 (1983)CrossRefGoogle Scholar
  12. 12.
    Segal, I. E.: Duke Math. J.221, 265 (1951)Google Scholar
  13. 13.
    Minkowski, H.: Raum und Zeit. Address to 80th Assembly of German Natural Scientists and Physicists, Cologne, 1908Google Scholar
  14. 14.
    Segal, I. E.: Mathematical cosmology and extragalactic astronomy. New York: Academic Press 1976Google Scholar
  15. 15.
    von Weizsacker, C. F.: Br. J. Philos. Sci.24, 321 (1973)CrossRefGoogle Scholar
  16. 16.
    Einstein, A.: Sitzber. Preuss. Akad. Wiss.1917, 142Google Scholar
  17. 17.
    Hubble, E.: Proc. Nat. Acad. Sci. USA15, 168 (1929)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hubble, E.: ibid.22, 621 (1936)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Møller, C.: The General Theory of Relativity. Oxford: Clarendon 1972Google Scholar
  20. 20.
    Segal, I. E.: Proc. Nat. Acad. Sci. USA73, 669 (1976)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hawkins, G. S.: Nature194, 563 (1962)CrossRefGoogle Scholar
  22. 22.
    Humason, M. L., et al.: Astron. J.61, 97 (1956)CrossRefGoogle Scholar
  23. 23.
    de Vaucouleurs, G., in: External galaxies and quasi-stellar objects, p. 353 (I.A.U. Symp. No. 44). Dordrecht: Reidel 1972Google Scholar
  24. 24.
    Segal, I. E.: Astron. Astrophys.18, 143 (1972)Google Scholar
  25. 25.
    Segal, I. E., Nicoll, J. F.: Astrophys. J.300, 224 (1986)CrossRefGoogle Scholar
  26. 26.
    Segal, I. E.: Proc. Nat. Acad. Sci. USA83, 7129 (1986)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Segal, I. E.: M.N.R.A.S.237, 17 (1989)CrossRefGoogle Scholar
  28. 28.
    Segal, I. E.: Ibid.242, 423 (1990)CrossRefGoogle Scholar
  29. 29.
    Hewitt, A., Burbidge, G.: Astrophys. J. Suppl.69, 1 (1989)CrossRefGoogle Scholar
  30. 30.
    Smith, M. G., in: Spectral Classification of the Future, p. 117 (I.A.U. Coll. No. 47, 1979)Google Scholar
  31. 31.
    Koo, D. C., Kron, R. G.: Astrophys. J.325, 92 (1988)CrossRefGoogle Scholar
  32. 32.
    Marano, B., et al.: M.N.R.A.S.232, 111 (1988)CrossRefGoogle Scholar
  33. 33.
    Zhan, Z., et al.: Publ. Astron. Soc. Pac.101, 631 (1989)CrossRefGoogle Scholar
  34. 34.
    Nicoll, J. F., Segal, I. E.: Proc. Nat. Acad. Sci. USA75, 535 (1978)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nicoll, J. F., et al.: ibid.77, 6275 (1980)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nicoll, J. F., Segal, I. E.: Astron. Astrophys.115, 398 (1982)Google Scholar
  37. 37.
    Nicoll, J. F., Segal, I. E.: ibid.118, 180 (1983)Google Scholar
  38. 38.
    Burbidge, G.: Ann. N.Y. Acad. Sci.1981, 123Google Scholar
  39. 39.
    Abell, G.: Astrophys. J. Suppl.3, 211 (1958)CrossRefGoogle Scholar
  40. 40.
    Stachel, J.: Brit. J. Hist. Sci.20, 65 (1987)CrossRefGoogle Scholar
  41. 41.
    Deprit, A., in: The Big Bang and George Lemaître, p. 370 (ed. A. Berger). Dordrecht: Reidel 1984Google Scholar
  42. 42.
    Segal, I. E., in: Group-theoretic methods in physics, p. 78 (ed. H. D. Doebner, T. Palev). Singapore: World-Scientific 1987Google Scholar
  43. 43.
    Wheeler, J. A.: Geometrodynamics. New York: Academic Press 1962Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • I. E. Segal
    • 1
  • J. F. Nicoll
    • 1
  • P. Wu
    • 1
  • Z. Zhou
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations