Advertisement

Communications in Mathematical Physics

, Volume 67, Issue 2, pp 121–136 | Cite as

Geometry ofSU(2) gauge fields

  • M. S. Narasimhan
  • T. R. Ramadas
Article

Abstract

We studySU(2) Yang-Mills theory onS3×ℝ from the canonical view-point. We use topological and differential geometric techniques, identifying the “true” configuration space as the base-space of a principal bundle with the gauge-group as structure group.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dirac, P.A.M.: Lectures on quantum mechanics. New York: Belfer Graduate School Science, Yeshiva University 1964Google Scholar
  2. 2.
    Faddeev, L.D.: The Feynman integral for singular Lagrangians. Theor. Math. Phys.1, 3–18 (1963)Google Scholar
  3. 3.
    Gribov, V.N.: Instability of non-abelian gauge theories and impossibility of choice of Coulomb gauge. SLAC Translation176, (1977)Google Scholar
  4. 4.
    Singer, I.M.: Some remarks on the Gribov ambiguity. Commun. Math. Phys.60, 7–12 (1978)Google Scholar
  5. 5.
    Adams, R.A.: Sobolev spaces. New York, San Francisco, London: Academic Press 1975Google Scholar
  6. 6.
    Eels, Jr., J.: A setting for global analysis. Bull. Am. Math. Soc.72, 751–807 (1966)Google Scholar
  7. 7.
    Bourbaki, N.: Topologie générale, Chapt. 3–4. Paris: Hermann 1960Google Scholar
  8. 8.
    Dieudonné, J.: Foundations of modern analysis, Vol. 1. New York, London: Academic Press 1969Google Scholar
  9. 9.
    Kodaira, K., Nirenberg, L., Spencer, D.C.: On the existence of deformations of complex analytic structures. Ann. Math.68, 450–459 (1958)Google Scholar
  10. 10.
    Bourbaki, N.: Variétés différentielles et analytiques (Fascicule de resultats), Paragraphes 1 à 7. Paris: Hermann 1967Google Scholar
  11. 11.
    Seifert, H., Threlfall, W.: Lehrbuch der Topologie. New York: Chelsea 1947Google Scholar
  12. 12.
    Milnor, J.: Lectures on theh-cobordism theorem. Princeton: Princeton University Press 1965Google Scholar
  13. 13.
    Koszul, J.L.: Lectures on fibre bundles and differential geometry. Bombay: Tata Institute of Fundamental Research 1960Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. S. Narasimhan
    • 1
  • T. R. Ramadas
    • 1
  1. 1.Tata Institute of Fundamental ResearchBombayIndia

Personalised recommendations