Communications in Mathematical Physics

, Volume 67, Issue 2, pp 121–136

Geometry ofSU(2) gauge fields

  • M. S. Narasimhan
  • T. R. Ramadas


We studySU(2) Yang-Mills theory onS3×ℝ from the canonical view-point. We use topological and differential geometric techniques, identifying the “true” configuration space as the base-space of a principal bundle with the gauge-group as structure group.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dirac, P.A.M.: Lectures on quantum mechanics. New York: Belfer Graduate School Science, Yeshiva University 1964Google Scholar
  2. 2.
    Faddeev, L.D.: The Feynman integral for singular Lagrangians. Theor. Math. Phys.1, 3–18 (1963)Google Scholar
  3. 3.
    Gribov, V.N.: Instability of non-abelian gauge theories and impossibility of choice of Coulomb gauge. SLAC Translation176, (1977)Google Scholar
  4. 4.
    Singer, I.M.: Some remarks on the Gribov ambiguity. Commun. Math. Phys.60, 7–12 (1978)Google Scholar
  5. 5.
    Adams, R.A.: Sobolev spaces. New York, San Francisco, London: Academic Press 1975Google Scholar
  6. 6.
    Eels, Jr., J.: A setting for global analysis. Bull. Am. Math. Soc.72, 751–807 (1966)Google Scholar
  7. 7.
    Bourbaki, N.: Topologie générale, Chapt. 3–4. Paris: Hermann 1960Google Scholar
  8. 8.
    Dieudonné, J.: Foundations of modern analysis, Vol. 1. New York, London: Academic Press 1969Google Scholar
  9. 9.
    Kodaira, K., Nirenberg, L., Spencer, D.C.: On the existence of deformations of complex analytic structures. Ann. Math.68, 450–459 (1958)Google Scholar
  10. 10.
    Bourbaki, N.: Variétés différentielles et analytiques (Fascicule de resultats), Paragraphes 1 à 7. Paris: Hermann 1967Google Scholar
  11. 11.
    Seifert, H., Threlfall, W.: Lehrbuch der Topologie. New York: Chelsea 1947Google Scholar
  12. 12.
    Milnor, J.: Lectures on theh-cobordism theorem. Princeton: Princeton University Press 1965Google Scholar
  13. 13.
    Koszul, J.L.: Lectures on fibre bundles and differential geometry. Bombay: Tata Institute of Fundamental Research 1960Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. S. Narasimhan
    • 1
  • T. R. Ramadas
    • 1
  1. 1.Tata Institute of Fundamental ResearchBombayIndia

Personalised recommendations