Communications in Mathematical Physics

, Volume 68, Issue 3, pp 259–273 | Cite as

An existence theorem for multimeron solutions to classical Yang-Mills field equations

  • T. Jonsson
  • O. McBryan
  • F. Zirilli
  • J. Hubbard
Article

Abstract

In this paper we prove the existence of solutions to a class of boundary value problems for a singular nonlinear elliptic partial differential equation in a half plane. By a recent paper of J. Glimm and A. Jaffe, this proves the existence of multimeron solutions to the classical SU(2) Yang-Mills field equations in Euclidean space.

Keywords

Differential Equation Neural Network Statistical Physic Complex System Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belavin, A., Polyakov, A., Schwartz, A., Tyupkin, Y.: Phys. Lett.59 B, 85 (1975)Google Scholar
  2. 2.
    Witten, E.: Phys. Rev. Lett.38, 121 (1977)Google Scholar
  3. 3.
    't Hooft, G.: Phys. Rev. Lett.37, 8 (1976)Google Scholar
  4. 4.
    DeAlfaro, V., Fubini, S., Furlan, G.: Phys. Lett.65 B, 163 (1976)Google Scholar
  5. 5.
    Callan, C., Dashen, R., Gross, D.: Phys. Rev.17 D, 2717 (1978)Google Scholar
  6. 6.
    Glimm, J., Jaffe, A.: Phys. Rev. Lett.40, 277 (1978); Phys. Rev.18 D, 463 (1978)Google Scholar
  7. 7.
    Glimm, J., Jaffe, A.: Phys. Lett.73 B, 167 (1978)Google Scholar
  8. 8.
    Vainberg, M.: Variational method and method of monotone operators in the theory of nonlinear equations. New York: Wiley 1973Google Scholar
  9. 9.
    Adams, R.: Sobolev spaces. New York: Academic Press 1965Google Scholar
  10. 10.
    Morrey, C.: Multiple integrals in the calculus of variations. Berlin, Heidelberg, New York: Springer 1966Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • T. Jonsson
    • 1
  • O. McBryan
    • 1
  • F. Zirilli
    • 1
  • J. Hubbard
    • 2
  1. 1.Harvard UniversityCambridgeUSA
  2. 2.Cornell UniversityIthacaUSA

Personalised recommendations