Advertisement

Communications in Mathematical Physics

, Volume 107, Issue 3, pp 431–454 | Cite as

On the continuous limit for a system of classical spins

  • P. L. Sulem
  • C. Sulem
  • C. Bardos
Article

Abstract

The continuum limit of a cubic latice of classical spins processing in the magnetic field created by their closest neighbours is considered. Results concerning existence, uniqueness and (for initially small spin deviation) long time behaviour, are presented.

Keywords

Magnetic Field Neural Network Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fogedby, H.C.: Solitons and magnons in the classical Heisenberg chain. J. Phys. A.13, 1467–1499 (1980)Google Scholar
  2. 2.
    Friedman, A.: Partial differential equations. New York: Holt-Rinehart Winston 1969Google Scholar
  3. 3.
    Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys.49, 435–480 (1977)Google Scholar
  4. 4.
    Klainerman, S.: Commun. Pure Appl. Math.33, 43–101 (1980)Google Scholar
  5. 5.
    Klainerman, S., Majda, A.: Commun. Pure Appl. Math.34, 481–524 (1981)Google Scholar
  6. 6.
    Klainerman, S., Ponce, G.: Commun. Pure Appl. Math.37, 133–141 (1983)Google Scholar
  7. 7.
    Ladysenskaya, O.A.: The boundary value problems of Mathematical Physics. Moscow: Nauka 1973 (in Russian); English translation: Applied Mathematical Sciences, Vol.49. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  8. 8.
    Lakshmanan, M., Ruijgrok, T.W., Thompson, C.J.: On the dynamics of a continuum spin system. Physica84, 577–590 (1976)Google Scholar
  9. 9.
    Lions, J.L.: Quelques methodes de résolution de problèmes aux limites non linèaires. Paris: Dunod, Gauthier Villars 1969Google Scholar
  10. 10.
    Ma, S.K.: Modern theory of critical phenomena. New York: W. A. Benjamin 1975Google Scholar
  11. 11.
    Ma, S.K., Mazenko, F.: Critical dynamics of ferromagnets in 6—ɛ dimensions: General discussion and detailed calculation. Phys. Rev. B11, 4077 (1975)Google Scholar
  12. 12.
    Moser, J.: Ann. Sc. Norm. Super. Pisa (3)20, 265–315 and 499–535 (1966)Google Scholar
  13. 13.
    Nirenberg, L.: Ann. Sc. Norm. Super. Pisa13, 116–162 (1959)Google Scholar
  14. 14.
    Shatah, J.: Differ. Equations46, 409–625 (1982)Google Scholar
  15. 15.
    Takhtajan, L.A.: Integration of the continuous Heisenberg spin chain through the inverse scattering method. Phys. Lett.64, 235–237 (1977)Google Scholar
  16. 16.
    Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP34, 62–69 (1972)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • P. L. Sulem
    • 1
    • 2
  • C. Sulem
    • 3
    • 4
  • C. Bardos
    • 5
  1. 1.School of Mathematical SciencesTel Aviv UniversityIsrael
  2. 2.CNRS, Observatoire de NiceFrance
  3. 3.Department of MathematicsBen Gurion University of the NegevBeershevaIsrael
  4. 4.CNRS, Centre de Mathématiques Appliquées, Ecole Normale SupérieureParisFrance
  5. 5.Département de MathématiquesUniversité de Paris XIII and Centre de Mathématiques Appliquées, Ecole Normale SupérieureParisFrance

Personalised recommendations