Advertisement

Communications in Mathematical Physics

, Volume 63, Issue 2, pp 131–153 | Cite as

Models of Gross-Neveu type are quantization of a classical mechanics with nonlinear phase space

  • F. A. Berezin
Article

Abstract

It is shown that the expansion in powers of 1/N characteristic of Gross-Neveu type models is of quasiclassical nature, 1/N taking part of the Planck constant. The limity classical mechanics has curved phase space that does not admit introduction of naturally canonically conjugated coordinates.

Keywords

Neural Network Statistical Physic Phase Space Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gross-Neveu, D.: Phys. Rev. D10, 3235 (1974)Google Scholar
  2. 2.
    Berezin, F.A.: Izv. Akad. Nauk SSr, Ser. Mat.38, 1116–1174 (1974); English translation: Math. USSR Izv.8, 1109–1165 (1974)Google Scholar
  3. 3.
    Berezin, F.A.: Izv. Akad. Nauk SSR, Ser. Mat.39, 363–402 (1975); English translation: Math. USSR Izv.9, 341–379 (1975)Google Scholar
  4. 4.
    Klauder, J.R.: J. Math. Phys.4, 1055 (1963)Google Scholar
  5. 5.
    Berezin, F.A.: Izv. Akad. Nauk SSR, Ser. Mat.36, 1134–1167 (1972); English translation: Math. USSR Izv.6, 1117–1151 (1972)Google Scholar
  6. 6.
    Berezin, F.A., Marinov, M.S.: Dynamics of a particle with half-integer spin as the Grassman version of classical mechanics. Preprint ITEP-43 (1976)Google Scholar
  7. 7.
    Hua Loo Keng: Harmonic analysis of the classical domain in the studi of analytic functions of several complex variables. Moskow: Inostrannaja Literatura 1959 (in Russian)Google Scholar
  8. 8.
    Berezin, F.A.: Rep. Math. Phys.9, 15–30 (1976)Google Scholar
  9. 9.
    Shereshevskiy, I.A.: Vestn. MGU (1977)Google Scholar
  10. 10.
    Berezin, F.A.: Metod vtorichnogo kvantovaniya. Moscow: Nauka 1965; English translation: Berezin, F.A.: The method of second quantization. New York-London: Academic Press 1966Google Scholar
  11. 11.
    Berezin, F.A.: Funct. Anal. Appl.1, 1–14 (1967) (in Russian)Google Scholar
  12. 12.
    Berezin, F.A.: Theor. Math. Phys.6, 194–211 (1971) (in Russian)Google Scholar
  13. 13.
    Gindikin, S.G.: Funct. Anal. Appl.9, 59–61 (1975) (in Russian)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • F. A. Berezin
    • 1
  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowUSSR

Personalised recommendations