Journal of Crystal and Molecular Structure

, Volume 4, Issue 6, pp 411–418 | Cite as

Refinement of the crystal structure of acetylacetonatodicarbonylrhodium(I)

  • Fazlul Huq
  • Andrzej C. Skapski
Article

Abstract

The structure of acetylacetonatodicarbonylrhodium(I), Rh(acac)(CO)2, has been refined from three-dimensional X-ray diffractometer data. The complex crystallises in the triclinic space groupP¯1 with two molecules in a unit cell of dimensionsa = 6.5189(5),b = 7.7614(8),c = 9.2049(12)Å, α = 106.04(1), β = 91.15(1), γ = 100.21(1) °. Full-matrix least-squares refinement, using 1456 independent reflections, has reachedR = 0.038.

The rhodium atom has a square-planar coordination with two Rh-O(acac) distances of 2.040 and 2.044Å, and two Rh-C(carbonyl) distances both equal to 1.831Å, the O-Rh-O angle is 90.8 ° and the C-Rh-C angle is 88.9 °. All twelve non-hydrogen atoms are closely planar, with an average deviation of 0.003Å, and a maximum deviation of 0.006Å, from the least-squares plane through the molecule. A second non-crystallographic plane of symmetry bisects the molecule, which therefore has essentiallymm2 (C2v) point symmetry. The molecules stack in such a way that the rhodium atoms of neighbouring molecules occupy the two remaining pseudo-octahedral positions, with Rh...Rh distances of 3.253 and 3.271Å.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, F. H., Rogers, D. & Troughton, P. G. H. (1971)Acta Crystallogr.,B27, 1325.Google Scholar
  2. Bailey, N. A., Coates, E., Robertson, G. B., Bonati, F. & Ugo, R. (1967)Chem Communications, 1041.Google Scholar
  3. Bonati, F. and Wilkinson, G. (1964)J. Chem. Soc., 3156.Google Scholar
  4. Busing, W. R. & Levy, H. A. (1957)Acta Crystallogr.,10, 180.Google Scholar
  5. Chem. Soc. Special Publ., (1965). No. 18.Google Scholar
  6. Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965)Acta Crystallogr.,18, 1035.Google Scholar
  7. Cromer, D. T. (1965)Acta Crystallogr.,18, 17.Google Scholar
  8. Cromer, D. T. & Waber, J. T. (1965)Acta Crystallogr.,18, 104.Google Scholar
  9. De Boer, J. L., Rogers, D., Skapski, A. C. & Troughton, P. G. H. (1966)Chem. Communications, 756.Google Scholar
  10. Evans, J. A. & Russell, D. R. (1971)Chem. Communications, 197.Google Scholar
  11. Hewitt, T. G. & De Boer, J. J. (1971)J. Chem. Soc. (A), 817.Google Scholar
  12. Hughes, E. W. (1941)J. Amer. Chem. Soc.,63, 1737.Google Scholar
  13. Johnson, C. K. (1965)ORTEP Thermal Ellipsoid Plotting Program. Oak Ridge National Laboratory Report, ORNL — 3794.Google Scholar
  14. La Placa, S. J. & Ibers, J. A. (1965)Acta Crystallogr.,18, 511.Google Scholar
  15. Pfluger, C. E., Burke, T. S. & Bednowitz, A. L. (1973)J. Cryst. Mol. Struct.,3, 181.Google Scholar
  16. Pitt, C. G., Monteith, L. K., Ballard, L. F., Collman, J. P., Morrow, J. C., Roper, W. R. & Ulkü, D. (1966)J. Amer. Chem. Soc.,88, 4286.Google Scholar
  17. Stewart, J. M. (1964) University of Maryland Technical Report, TR-64-6.Google Scholar
  18. Thomas, T. W. & Underhill, A. E. (1972)Chem. Soc. Rev.,1, 99.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1974

Authors and Affiliations

  • Fazlul Huq
    • 1
  • Andrzej C. Skapski
    • 1
  1. 1.Chemical Crystallography LaboratoryImperial CollegeLondonEngland

Personalised recommendations