Journal of Crystal and Molecular Structure

, Volume 4, Issue 6, pp 411–418 | Cite as

Refinement of the crystal structure of acetylacetonatodicarbonylrhodium(I)

  • Fazlul Huq
  • Andrzej C. Skapski


The structure of acetylacetonatodicarbonylrhodium(I), Rh(acac)(CO)2, has been refined from three-dimensional X-ray diffractometer data. The complex crystallises in the triclinic space groupP¯1 with two molecules in a unit cell of dimensionsa = 6.5189(5),b = 7.7614(8),c = 9.2049(12)Å, α = 106.04(1), β = 91.15(1), γ = 100.21(1) °. Full-matrix least-squares refinement, using 1456 independent reflections, has reachedR = 0.038.

The rhodium atom has a square-planar coordination with two Rh-O(acac) distances of 2.040 and 2.044Å, and two Rh-C(carbonyl) distances both equal to 1.831Å, the O-Rh-O angle is 90.8 ° and the C-Rh-C angle is 88.9 °. All twelve non-hydrogen atoms are closely planar, with an average deviation of 0.003Å, and a maximum deviation of 0.006Å, from the least-squares plane through the molecule. A second non-crystallographic plane of symmetry bisects the molecule, which therefore has essentiallymm2 (C2v) point symmetry. The molecules stack in such a way that the rhodium atoms of neighbouring molecules occupy the two remaining pseudo-octahedral positions, with Rh...Rh distances of 3.253 and 3.271Å.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, F. H., Rogers, D. & Troughton, P. G. H. (1971)Acta Crystallogr.,B27, 1325.Google Scholar
  2. Bailey, N. A., Coates, E., Robertson, G. B., Bonati, F. & Ugo, R. (1967)Chem Communications, 1041.Google Scholar
  3. Bonati, F. and Wilkinson, G. (1964)J. Chem. Soc., 3156.Google Scholar
  4. Busing, W. R. & Levy, H. A. (1957)Acta Crystallogr.,10, 180.Google Scholar
  5. Chem. Soc. Special Publ., (1965). No. 18.Google Scholar
  6. Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965)Acta Crystallogr.,18, 1035.Google Scholar
  7. Cromer, D. T. (1965)Acta Crystallogr.,18, 17.Google Scholar
  8. Cromer, D. T. & Waber, J. T. (1965)Acta Crystallogr.,18, 104.Google Scholar
  9. De Boer, J. L., Rogers, D., Skapski, A. C. & Troughton, P. G. H. (1966)Chem. Communications, 756.Google Scholar
  10. Evans, J. A. & Russell, D. R. (1971)Chem. Communications, 197.Google Scholar
  11. Hewitt, T. G. & De Boer, J. J. (1971)J. Chem. Soc. (A), 817.Google Scholar
  12. Hughes, E. W. (1941)J. Amer. Chem. Soc.,63, 1737.Google Scholar
  13. Johnson, C. K. (1965)ORTEP Thermal Ellipsoid Plotting Program. Oak Ridge National Laboratory Report, ORNL — 3794.Google Scholar
  14. La Placa, S. J. & Ibers, J. A. (1965)Acta Crystallogr.,18, 511.Google Scholar
  15. Pfluger, C. E., Burke, T. S. & Bednowitz, A. L. (1973)J. Cryst. Mol. Struct.,3, 181.Google Scholar
  16. Pitt, C. G., Monteith, L. K., Ballard, L. F., Collman, J. P., Morrow, J. C., Roper, W. R. & Ulkü, D. (1966)J. Amer. Chem. Soc.,88, 4286.Google Scholar
  17. Stewart, J. M. (1964) University of Maryland Technical Report, TR-64-6.Google Scholar
  18. Thomas, T. W. & Underhill, A. E. (1972)Chem. Soc. Rev.,1, 99.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1974

Authors and Affiliations

  • Fazlul Huq
    • 1
  • Andrzej C. Skapski
    • 1
  1. 1.Chemical Crystallography LaboratoryImperial CollegeLondonEngland

Personalised recommendations