, Volume 16, Issue 3, pp 179–184 | Cite as

Effect of physical training on glucose tolerance and on glucose metabolism of skeletal muscle in anaesthetized normal rats

  • M. Berger
  • F. W. Kemmer
  • K. Becker
  • L. Herberg
  • M. Schwenen
  • A. Gjinavci
  • P. Berchtold


The effect of physical training on glucose tolerance in vivo and skeletal muscle glucose metabolism in vitro was investigated in normal rats. Treadmill running for 10 days up to 240 min/day led to a decrease of basal and glucose-stimulated plasma insulin levels without major alterations of the IV glucose tolerance (1 g/kg body weight). Swim training of two weeks' duration, i. e. exercise up to 2×75 min/ day, which did not induce significant changes in body composition, skeletal muscle glycogen levels or citrate synthase activity, resulted in a significant improvement of IV glucose tolerance and substantial reductions of basal and glucose-stimulated plasma insulin levels. Associated with this apparent improvement of insulin sensitivity in vivo, significant increases of the insulin-stimulated glucose uptake (+ 55%) and lactate oxidation (+ 78%) in vitro were found on perfusion of the isolated hindquarter of swim-trained animals. It is suggested that mild physical training can improve glucose tolerance and insulin sensitivity in normal rats, at least in part, due to an increase of insulin sensitivity of skeletal muscle glucose metabolism.

Key words

Physical training glucose tolerance skeletal muscle glucose metabolism insulin sensitivity 


  1. 1.
    Joslin, E. P.: The treatment of diabetes mellitus. In: Treatment of diabetes mellitus, 10th edition. Joslin, E. P., Root, H. F., White, P., Marble, A. (Eds.), pp. 243–300. Philadelphia: Lea and Febiger 1959Google Scholar
  2. 2.
    Berger, M., Berchtold, P., Gries, F. A., Zimmermann, H.: Die Bedeutung von Muskelarbeit und-training für die Therapie des Diabetes Mellitus. Dtsch. Med. Wochenschr.103, 439–443 (1978)PubMedGoogle Scholar
  3. 3.
    Berger, M., Berchtold, P., Cüppers, H. J., Drost, H., Kley, H. K., Müller, W. A., Wiegelmann, W., Zimmermann-Telschow, H., Gries, F. A., Krüskemper, H. L., Zimmermann, H.: Metabolic and hormonal effects of muscular exercise in juvenile type diabetics. Diabetologia13, 355–365 (1977)PubMedGoogle Scholar
  4. 4.
    Blotner, H.: Effect of prolonged physical inactivity on tolerance of sugar. Arch. Intern. Med.75, 39–44 (1945)Google Scholar
  5. 5.
    Lipman, R. L., Raskin, P., Love, T., Triebwasser, J., Lecocq, F. R., Schnure, J. J.: Glucose intolerance during decreased physical activity in man. Diabetes21, 101–107 (1972)PubMedGoogle Scholar
  6. 6.
    Mann, G. V., Garett, H.L., Farhi, A., Murray, H., Billings, F. T., Shute, E., Schwarten, S. E.: Exercise to prevent coronary heart disease. Am. J. Med.46, 12–27 (1969)PubMedGoogle Scholar
  7. 7.
    Montoye, H. J., Block, W. D., Metzner, H., Keller, J. B.: Habitual physical activity and glucose tolerance. Diabetes26, 172–176 (1977)PubMedGoogle Scholar
  8. 8.
    Hirsch, E. Z., Hellerstein, H. K., McLeod, A.A.: Physical training and coronary heart disease. In: Exercise and the heart, pp. 106–187. Springfield, Ill.: C. C.Thomas 1972Google Scholar
  9. 9.
    Björntorp, P., de Jounge, K., Sjöstrom, L., Sullivan, L.: The effect of physical training on insulin production in obesity. Metabolism19, 631–637 (1970)PubMedGoogle Scholar
  10. 10.
    Björntorp, P., Berchtold, P., Grimby, G., Lindholm, B., Sanne, H., Tibblin, G., Wilhelmsen, L.: Effects of physical training on glucose tolerance, plasma insulin and lipids and on body composition in men after myocardial infarction. Acta Med. Scand.192, 439–443 (1972)PubMedGoogle Scholar
  11. 11.
    Björntorp, P., de Jounge, K., Sjöström, L., Sullivan, L.: Physical training in human obesity. II. Effects on plasma insulin in glucose intolerant subjects without marked hyperinsulinemia. Scand. J. Clin. Lab. Invest.32, 42–45 (1973)Google Scholar
  12. 12.
    Björntorp, P., Holm, G., Jacobsson, B., Schiller-de Jounge, K., Lundberg, P.-A., Sjöstrom, L., Smith, U., Sullivan, L.: Physical training in human hyperplastic obesity. IV. Effects on the hormonal status. Metabolism26, 319–328 (1977)PubMedGoogle Scholar
  13. 13.
    Lohmann, D., Liebold, F., Heilmann, W., Senger, H., Pohl, A.: Diminished insulin response in highly trained athletes. Metabolism27, 521–542 (1978)PubMedGoogle Scholar
  14. 14.
    Vogel, A. I.: Practical organic chemistry, 3rd Edition, pp. 153–154. London: Longmans, Green and Co. 1961Google Scholar
  15. 15.
    Baldwin, K. M., Klinkerfuss, G. H., Terjung, R. L., Mole, P. A., Holloszy, J. O.: Respiratory capacity of white, red, and intermediate muscle: adaptive response to exercise. Am. J. Physiol.222, 333–378 (1972)PubMedGoogle Scholar
  16. 16.
    Srere, P. A.: Citrate synthase. Methods Enzymol.13, 3–5 (1969)Google Scholar
  17. 17.
    Ruderman, N. B., Houghton, C. R. S., Hems, R.: Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem. J.124, 639–651 (1971)PubMedGoogle Scholar
  18. 18.
    Berger, M., Hagg, S. A., Ruderman, N. B.: Glucose metabolism in perfused skeletal muscle. Interaction of insulin and exercise on glucose uptake. Biochem. J.146, 231–238 (1975)PubMedGoogle Scholar
  19. 19.
    Berger, M., Hagg, S. A., Goodman, M. N., Ruderman, N. B.: Glucose metabolism in perfused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition. Biochem. J.158, 191–202 (1976)PubMedGoogle Scholar
  20. 20.
    Kemmer, F. W., Berger, M., Herberg, L., Gries, F. A.: Effects of metformin on glucose metabolism of isolated perfused rat skeletal muscle. Drug Res.27, 1573–1576 (1977)Google Scholar
  21. 21.
    Bergmeyer, H. U., Bernt, E.: D-Glucose Bestimmung mit Glukose-Oxydase und Reoxydase. In: Methoden der enzymatischen Analyse. Bergmeyer, H. U. (Ed.), pp. 1172–1176. Weinheim/Bergstraße, West Germany: Verlag Chemie 1970Google Scholar
  22. 22.
    Herberg, L., Kley, H. K.: Adrenal function and the effect of a high fat diet on C57B1/6J and C57B1/6J-ob/ob mice. Horm. Metab. Res.7, 410–415 (1975)PubMedGoogle Scholar
  23. 23.
    Kemmer, F. W., Berger, M., Herberg, L., Gries, F. A., Wierdeyer, L., Becker, K.: Glucose metabolism in the fatty Zucker rat. Biochem. J. (in press)Google Scholar
  24. 24.
    Curtis-Prior, P. B., Tretheway, J., Stewart, G. A., Hanley, T.: The contribution of different organs and tissues of the rat to assimilation of glucose. Diabetologia5, 384–391 (1969)PubMedGoogle Scholar
  25. 25.
    Holloszy, J. O., Booth, F. W.: Biochemical adaptations to endurance exercise in muscle. Annu. Rev. Physiol.38, 273–291 (1976)PubMedGoogle Scholar
  26. 26.
    Fitts, R. H., Booth, F. W., Winder, W. W., Holloszy, J. O.: Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am. J. Physiol.228, 1029–1033 (1975)PubMedGoogle Scholar
  27. 27.
    Karlsson, J., Nordesjö, L.-O., Saltin, B.: Muscle glycogen utilisation during exercise after physical training. Acta Physiol. Scand.90, 210–217 (1974)PubMedGoogle Scholar
  28. 28.
    Saltin, B., Karlsson, J.: Muscle glycogen utilization during work of different intensities. In: Muscle metabolism during exercise. Pernow, B., Saltin, B. (Eds.), pp. 289–299. New York: Plenum Press 1971Google Scholar
  29. 29.
    Roch-Norlund, A. E.: Muscle glycogen synthetase in diabetic man. Acta Physiol. Scand. [Suppl.]358, 1–27 (1972)Google Scholar
  30. 30.
    Pruett, E. D. R.: Fat and carbohydrate metabolism in exercise and recovery, and its dependence upon work load severity. Academic Dissertation, Institute of Work Physiology, University of Oslo 1971Google Scholar
  31. 31.
    Soman, V., Koivisto, V., Grantham, P., Felig, P.: Increased insulin binding to monocytes after exercise: cellular mechanism of augmented insulin sensitivity. Diabetes27 [Suppl. 1], 449 (1978)Google Scholar
  32. 32.
    Holm, J. S. E.: Skeletal muscle metabolism in patients with peripheral arterial insufficiency. Academic Dissertation, Göteborg 1972Google Scholar
  33. 33.
    Gould, M. K., Rawlinson, W. A.: Effect of natural exercise on pentose transport in rat skeletal muscle. Am. J. Physiol.211, 147–150 (1966)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. Berger
    • 1
    • 2
    • 3
  • F. W. Kemmer
    • 1
    • 2
  • K. Becker
    • 1
    • 2
  • L. Herberg
    • 1
    • 2
  • M. Schwenen
    • 1
    • 2
  • A. Gjinavci
    • 1
    • 2
  • P. Berchtold
    • 1
    • 2
  1. 1.Diabetes Research Institute, Institute of Physiological Chemistry, Department of MedicineUniversity of DüsseldorfFRG
  2. 2.Institut de Biochemie CliniqueUniversity of GenevaSwitzerland
  3. 3.Medizinische Universitätsklinik EDüsseldorfGermany

Personalised recommendations