Advertisement

Communications in Mathematical Physics

, Volume 89, Issue 1, pp 1–12 | Cite as

On the interpretation of 1/f noise

  • E. Marinari
  • G. Parisi
  • D. Ruelle
  • P. Windey
Article

Abstract

We propose a model of 1/f noise based on a random walk in a random potential. Numerical support for the model is given, and physical applicability discussed.

Keywords

Neural Network Statistical Physic Complex System Random Walk Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hooge, F.N., Kleinpenning, T.G.M., Vandamme, L.K.J.: Rep. Prog. Phys.44, 479 (1981)Google Scholar
  2. 2.
    Dutta, P., Horn, P.M.: Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys.53, 497 (1981)Google Scholar
  3. 3.
    Press, W.H.: Comments Astrophys. Space Phys.7, 103 (1978)Google Scholar
  4. 4.
    Mandelbrot, B.: The fractal geometry of nature. San Francisco: Freeman, 1982Google Scholar
  5. 5.
    Voss, R.F., Clarke, J.: Flicker (1/f) noise: Equilibrium temperature and resistance fluctuations. Phys. Rev. B13, 556 (1976)Google Scholar
  6. 6.
    Omnes, R.: A theory of 1/f noise (to be published)Google Scholar
  7. 7.
    Arrecchi, F.T., Lisi, F.: Hopping mechanism generating 1/f noise in nonlinear systems. Phys. Rev. Lett.49, 94 (1982)Google Scholar
  8. 8.
    Beasley, M.R., D'Humieres, D., Huberman, B.A.: Comment on: Hopping mechanism generating 1/f noise in nonlinear systems (to be published)Google Scholar
  9. 9.
    Sinai, Ya.G.: Teor. Veroyatn. Ee Primen.27, 247 (1982); Proceedings of the Berlin Conference on Mathematical Problems in Theoretical Physics. In: Lecture Notes in Physics, Schrader, R., Seiler, R., Uhlenbrock, D.A. (eds.). Berlin, Heidelberg, New York: Springer 1982, p. 12Google Scholar
  10. 10.
    Hooge, F.N.: 1/f noise is no surface effect. Phys. Lett.29 A, 139 (1969)Google Scholar
  11. 11.
    Derrida, B., Pomeau, Y.: Phys. Rev. Lett.48, 627 (1982)Google Scholar
  12. 12.
    Derrida, B., Hilhorst, H.: On correlation functions in random magnets. J. Phys. C14, L539 (1981)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • E. Marinari
    • 1
  • G. Parisi
    • 2
  • D. Ruelle
    • 3
  • P. Windey
    • 1
  1. 1.Service de Physique Théorique, CEN-SaclayGif-sur-Yvette CedexFrance
  2. 2.Université di Roma II, Tor VergataRomaItaly
  3. 3.I.H.E.S.Bures-sur-YvetteFrance

Personalised recommendations