Advertisement

Diabetologia

, Volume 7, Issue 5, pp 339–348 | Cite as

Monoamines in the pancreatic islets of the mouse

Subcellular localization of 5-hydroxytryptamine by electron microscopic autoradiography
  • R. Ekholm
  • L. E. Ericson
  • I. Lundquist
Originals

Summary

By application of autoradiographic technique the cellular and subcellular distribution of radio-activity in mouse pancreatic islets was investigated following intravenous administration of3H-5-hydroxytryptophan. Autoradiographic silver grains, most of which probably represent 5-hydroxytryptamine formed from the labelled precursor, appeared over A2 and B cells, whereas very few grains were recorded over A1 cells at any time investigated (20 min–16 hours) and also when monoamine oxidase was inhibited. Quantitative analysis of autoradiographic sections revealed that the concentration of silver grains over the specific granules of A2 and B cells was 5–10 times higher than over the remaining parts of these cells. In A2 cells the highest grain count was recorded at 20 minutes, in B cells at 1 hour after the injection of label. After 8 hours very few, and after 16 hours no silver grains appeared over islet cells. Inhibition of monoamine oxidase caused an increased retention of label over islet cells, most pronounced over A2 cells. Pretreatment with reserpine abolished the autoradiographic reaction.

Key-words

Autoradiography 5-hydroxytryptamine 5-hydroxytryptophan monoamine oxidase inhibition mouse pancreatic islets reserpine ultrastructure 

Monoamines dans les îlots pancréatiques de la souris

Résumé

En appliquant la technique autoradiographique, on a étudié la distribution cellulaire et subcellulaire de la radioactivité dans les îlots pancréatiques de la souris après une injection intra-veineuse de3H-5-hydroxytryptophane. Des grains d'argent autoradiographiques dont la plupart représentent probablement de la 5-hydroxytryptamine qui s'est formée à partir du précurseur marqué, sont apparus sur les cellules A2 et B, tandis que très peu de grains ont été trouvés sur les cellules A1 à chacun des examens (entre 20 min et 16 h) et de même après l'inhibition de la monoamine-oxidase. L'analyse quantitative des coupes autoradiographiques a révélé que la concentration de grains d'argent sur les granules spécifiques des cellules A2 et B était 5 à 10 fois plus élevée que sur les parties restantes de ces cellules. Sur les cellules A2 le nombre le plus élevé de grains a été noté 20 min après l'injection du marqueur et sur les cellules B une heure après cette injection. Au bout de 8 h, il n'apparaissait que très peu de grains d'argent sur les cellules des îlots, et plus aucun au bout de 16 h. L'inhibition de la monoamine-oxidase a provoqué une augmentation de la rétention de marqueur sur les cellules des îlots, plus prononcée sur les cellules A2. Un traitement préalable à la réserpine a supprimé cette réaction autoradiographique.

Monoamine in den Pankreasinseln der Maus

Zusammenfassung

Mit Hilfe der Technik der Autoradiographie wurde die zelluläre und subzelluläre Verteilung der Radioaktivität nach intravenöser Applikation von3H-5-Hydroxytryptophan in den Pankreasinseln der Maus untersucht. Die autoradiographischen Silberkörner, welche zumeist 5-Hydroxytryptamin darstellen, das aus der radioaktiven Ausgangssubstanz gebildet worden war, erschienen über den A2 und B-Zellen, während nach jedem untersuchten Zeitintervall (20 min–16 Std) auch wenn die Monoamino-Oxidase gehemmt wurde, nur sehr wenige Körner über den A1-Zellen erschienen. Quantitative Untersuchungen der Autoradiographieschnitte zeigten, daß die Konzentration der Silberkörner über den spezifischen Granula der A2-Zellen und der B-Zellen etwa 5–10 mal höher als über den restlichen Teilen der Zellen war. In den A2-Zellen wurde die höchste Körnerkonzentration nach 20 min, in den B-Zellen 1 Std nach Injektion der markierten Substanz festgestellt. Nach 8 Std zeigten sich nur wenige, nach 16 Std keine Silberkörner mehr über den Inselzellen. Die Hemmung der Monoamino-Oxidase verursachte eine vermehrte Anreicherung von Radioaktivität über den Inselzellen, am meisten über den A2-Zellen. Eine Vorbehandlung mit Reserpin verhinderte die autoradiographische Darstellung.

References

  1. 1.
    Bensley, R.R.: Studies on the pancreas of the guinea pig. Amer. J. Anat.12, 297–388 (1911).Google Scholar
  2. 2.
    Bloom, W.: New type of granular cell in islets of Langerhans of man. Anat. Rec.49, 363–371 (1931).Google Scholar
  3. 3.
    Caramia, F.: Electron microscopic description of a third cell type in the islets of pancreas of the rat. Amer. J. Anat.112, 53–64 (1963).PubMedGoogle Scholar
  4. 4.
    Caramia, F., Munger, B.L., Lacy, P.E.: The ultrastructural basis for the identification of cell types in the pancreatic islets. I. Guinea pig. Z. Zeilforsch.67, 533–546 (1965).Google Scholar
  5. 5.
    Caro, L.G., van Tubergen, R.P.: High-resolution autoradiography. I. Methods. J. Cell Biol.15, 173–188 (1962).PubMedGoogle Scholar
  6. 6.
    Cegrell, L.: The occurrence of biogenic monoamines in the mammalian endocrine pancreas. Acta physiol. scand. suppl. 314 (1968).Google Scholar
  7. 7.
    —, Falck, B.: A catecholamine storage in the pancreatic A2-cells of owl monkey(Aotes trivirgatus). Z. Zeilforsch.94, 530–533 (1969).Google Scholar
  8. 8.
    — —, Hellman, B.: Monoaminergic mechanisms in the endocrine pancreas. In: Brolin, S.E., Hellman, B. Knutson F. (Eds.): The Structure and Metabolism of the Pancreatic Islets, pp. 429–435. London: Pergamon Press. 1964.Google Scholar
  9. 9.
    Descarries, L., Droz, B.: Intraneuronal distribution of exogenous norepinephrine in the central nervous system of the rat. J. Cell Biol.44, 385–399 (1970).PubMedGoogle Scholar
  10. 10.
    Ekholm, R., Ericson, L.E.: Monoaminergic mechanisms in the exocrine pancreas of the mouse studied with electron microscopic autoradiography. J. Ultrastruct. Res. in press (1971).Google Scholar
  11. 11.
    - - Lundquist, I.: Monoamines in the pancreatic islets of the mouse. 5-hydroxytryptamine as an intracellular modifier of insulin secretion and the effect of monoamine oxidase inhibitors. Diabetologia in press.Google Scholar
  12. 12.
    Epple, A.: Zur vergleichenden Zytologie des Inselorganes. Zool. Anz. suppl.27, 461–470 (1964).Google Scholar
  13. 13.
    Ericson, L.E.: Subcellular localization of 5-hydroxytryptamine in the parafollicular cells of the mouse thyroid gland. An autoradiographic study. J. Ultrastruct. Res.31, 162–177 (1970).PubMedGoogle Scholar
  14. 14.
    —: Uptake of3H-5-hydroxytryptophan by noradrenergic nerves in the mouse pancreas as evidenced by electron microscopic autoradiography. Z. Zeilforsch.113, 441–449 (1971).Google Scholar
  15. 15.
    Falck, B., Hillarp, N.-A., Thieme, G., Torp, A.: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem.10, 348–354 (1962).Google Scholar
  16. 16.
    —, Hellman, B.: Evidence for the presence of biogenic amines in pancreatic islets. Experientia19, 139–140 (1963).Google Scholar
  17. 17.
    — —: A fluorescent reaction for monoamines in the insulin producing cells of the guinea pig. Acta endocrinol. (Kbh.)45, 133–138 (1964).Google Scholar
  18. 18.
    —, Owman, Ch.: 5-hydroxytryptamine and related amines in endocrine cell systems. Advanc. Pharmacol.6A, 211–231 (1968).Google Scholar
  19. 19.
    Fujita, T.: The identification of argyrophil cells of pancreatic islets with D-cells. Arch. histol. jap.25, 189–197 (1964).PubMedGoogle Scholar
  20. 20.
    Gershon, M.D., Ross, L.L.: Radioisotope studies of the binding, exchange and distribution of 5-hydroxytryptamine synthesized from its radioactive precursor. J. Physiol.186, 451–476 (1966).PubMedGoogle Scholar
  21. 21.
    — —: Location of sites of 5-hydroxytryptamine storage and metabolism by radioautography. J. Physiol.186, 477–492 (1966).PubMedGoogle Scholar
  22. 22.
    Hellerström, C., Hellman, B.: Some aspects of silver impregnation of the islets of Langerhans in the rat. Acta endocrinol. (Kbh.)35, 518–532 (1960).Google Scholar
  23. 23.
    — —, Pettersson, B., Alm, G.: The two types of pancreatic A cells and their relation to the glucagon secretion. In: Brolin, S.E., Hellman, B., Knutson, F. (Eds.): The Structure and Metabolism of the Pancreatic Islets, pp. 117–130. London: Pergamon Press 1964.Google Scholar
  24. 24.
    Hoyos-Guevara, E. de: The pancreatic islet system of the mouse(mus musculus). Ultrastructural report of six new cell types. Z. Zellforsch.101, 28–62 (1969).PubMedGoogle Scholar
  25. 25.
    Jaim-Echeverry, G., Zieher, L.M.: Electron microscopic cytochemistry of 5-hydroxytryptamine in the beta cells of guinea pig endocrine pancreas. Endocrinology83, 917–923 (1968).PubMedGoogle Scholar
  26. 26.
    Lacy, P.E.: Electron microscopic identification of different cell types in the islets of Langerhans of the guinea pig, rat, rabbit and dog. Anat. Rec.128, 255–261 (1957).PubMedGoogle Scholar
  27. 27.
    Maunsbach, A.B.: Absorption of125I-labelled homologous albumin by rat kidney proximal tubule cells. A study of microperfused single proximal tubules by electron microscopic autoradiography and histochemistry. J. Ultrastruct. Res.15, 197–241 (1966).PubMedGoogle Scholar
  28. 28.
    Munger, B.L., Caramia, F., Lacy, P.E.: The ultrastructural basis for the identification of cell types in the pancreatic islets. II. Rabbit, dog and opossum. Z. Zellforsch.67, 776–798 (1965).PubMedGoogle Scholar
  29. 29.
    Pearse, A.G.E.: Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimobranchial C cells and calcitonin. Proc. roy. Soc. Lond. B.170, 71–80 (1968).Google Scholar
  30. 30.
    Peters, T. Jr, Ashley, C. A.: An artefact in radioautography due to binding of free amino acids to tissues by fixatives. J. Cell Biol.33, 53–60 (1967).PubMedGoogle Scholar
  31. 31.
    Petkov, P.: De l'activité monoaminooxydasique dans le pancreas de l'homme et de certain mammifières: rat blanc, cobaye, chat et lapin. Ann. Histochem. 10, 10, 17–24 (1965).Google Scholar
  32. 32.
    Ritzen, M., Hammarström, L., Ullberg, S.: Autoradiographic distribution of 5-hydroxytryptamine and 5-hydroxytryptophan in the mouse. Biochem. Pharmacol.14, 313–321 (1965).PubMedGoogle Scholar
  33. 33.
    Sato, T., Herman, L., Fitzgerald, P.J.: The comparative ultrastructure of the, pancreatic islets of Langerhans. Gen. comp. Endocrinol.7, 132–157 (1966).Google Scholar
  34. 34.
    Solcia, E., Sampietro, R.: On the nature of the metachromatic cells of pancreatic islets. Z. Zellforsch.65, 131–138 (1965).Google Scholar
  35. 35.
    Thomas, B.: Cellular components of the mammalian islets of Langerhans. Amer. J. Anat.62, 31–57 (1937).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • R. Ekholm
    • 1
    • 2
  • L. E. Ericson
    • 1
    • 2
  • I. Lundquist
    • 1
    • 2
  1. 1.Department of AnatomyUniversity of GöteborgSweden
  2. 2.Department of PharmacologyUniversity of LundSweden

Personalised recommendations