Radiation and Environmental Biophysics

, Volume 30, Issue 2, pp 147–157 | Cite as

Cs-134/137 contamination and root uptake of different forest trees before and after the Chernobyl accident

  • J. Ertel
  • H. Ziegler


The Cs-134/137 activities were measured from different tree organs of spruce, larch and sycamore maple. Two locations in South Bavaria were monitored during a period of 2.5 years following the Chernobyl accident. Samples taken in 1985 allow to determine the Cs-137 contamination before the accident. Increasing Cs-137 activities from older to younger needle years ofPicea abies caused by root-uptake of the global weapons' fallout are due to the high phloem mobility of this element and the remaining of the needles at the tree for about 6–7 years. In contrast, the Cs-137 activity was much smaller in leaves of larch and sycamore maple. After the Chernobyl accident, the higher contamination of spruce > larch > sycamore maple is dependent on the roughness of bark, absolute bark surface and the existence of leaves during the deposition of Chernobyl-derived radioactivity. The Cs-134/137 activity (Bq/kg d.w.) was about 25-times higher in bark compared to wood ofPicea abies and 1.5–4.7 times higher in directly contaminated twig-axes than in leaves. Till the end of the investigation the major contamination of the shoots was due to direct deposition of cesium on the trees. A maximum of 5–15% of the total activity of the directly contaminated branches of the plants was calculated to be part of root-uptake, depending on the amount of initial retention. 20% of the translocated cesium into new leaves of larch and about 50% into sycamore maple resulted from root-uptake 2.5 years after the accident.


Cesium Total Activity Forest Tree Chernobyl Accident Root Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarkrog A (1982) Translocation of radionuclides in cereal crops. Industrial Ecology Group Workshop, Ecological Aspects of Radionuclide Release, April 5–7Google Scholar
  2. Bayerische Staatsministerien für Landesentwicklung und Umweltfragen und für Ernährung, Landwirtschaft und Forsten (1987) Radioaktive Kontamination der Böden in Bayern, pp 1–60Google Scholar
  3. Bunzl K, Kracke W (1988) Cumulative deposition of Cs-137, Pu-238/239/240 am Am-241 from global fallout in soils from forest, grassland and arable land in Bavaria. J Environ Radiat 8:1–14Google Scholar
  4. Bunzl K, Schimmack W, Kreutzer K, Schierl R (1989 a) The migration of fallout Cs-134, Cs-137 and Ru-106 from Chernobyl and of Cs-137 from weapons testing in a forest soil. Z Pflanzenernähr Bodenkd 152:39–44Google Scholar
  5. Bunzl K, Schimmack W, Kreutzer K, Schierl R (1989b) Interception and retention of Chernobyl-derived Cs-134/137 and Ru-106 in a spruce stand. Sci Total Envir 78:77–87Google Scholar
  6. Coughtrey PJ, Thorne MC (1983) Radionuclide distribution and transport in terrestrial and aquatic ecosystems. A critical review of data, vol 1. Balkema, Rotterdam, pp 1–496Google Scholar
  7. Droste zu Hülshoff B (1968) Vorläufige Untersuchungsergebnisse über die Erfassung oberirdischer Baumorgane an einer 76-jährigen vorherrschenden Fichte im Ebersberger Forst bei München. Forstw Cbl 87:369–383Google Scholar
  8. Frissel MJ, Pennders R (1983) Models for the accumulation and migration of Sr-90, Cs-137, Pu-239/240 and Am-241 in the upper layer of soils. In:Coughtrey PJ, Bell JNB, Roberts TM (eds) Ecological aspects of radionuclide release. Blackwell, Oxford, pp 63–72Google Scholar
  9. Harley CP, Moon HH, Regeimbal LO (1956) Absorption of nutrient salts by bark and woody tissues of apple and subsequent translocation. Proc Am Soc Hort Sci 67:47–57Google Scholar
  10. Hötzl H, Rosner G, Winkler R (1987) Ground depositions and air concentration of Chernobyl fallout radionuclides at Munich-Neuherberg. Radiochim Acta 41:181–190Google Scholar
  11. Hunt GM, Baker EA (1982) Developmental and environmental variations in plant epicuticular waxes: some effects on the penetration of naphthylacetic acid. In: Cutler DF, Alrin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 279–292Google Scholar
  12. Katz C, Oren R, Schulze ED, Milburn J (1989) Uptake of water and solutes through twigs ofPicea abies (L.) Karst. Trees 3:33–37Google Scholar
  13. Kennel E (1985) Ergebnisse der Waldschadensforschung 1984 in Bayern. Allg Forstz 40:100–101Google Scholar
  14. Kohno M, Koizumi Y, Okumura K, Mito I (1988) Distribution of environmental Cs-137 in tree rings. J Environ Radioact 8:15–19Google Scholar
  15. Nommik H, Popovic B (1967) Die Translokation von N-15, Sr-90 und Cs-137 sowie die Verlagerung einiger Nährstoffe in verschiedenen Pflanzenteilen bei der Kiefer. Forstw Cbl 81:181–193Google Scholar
  16. Schulze ED (1982) Plant life forms and their carbon, water and nutrient relations. In: Lange OL, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology, vol. 12. Springer, Berlin Heidelberg New York, pp 615–676Google Scholar
  17. SSK-Bericht (1987) Auswirkungen des Reaktorunfalls in Tschernobyl auf die Bundesrepublik Deutschland. Zusammenfassender Bericht der Strahlenschutzkommision, Bd 7. Fischer, Stuttgart New York, pp 1–237Google Scholar
  18. Ticknor RL (1953) The entry of nutrients through the bark and leaves of deciduous fruit trees as indicated by radioactive isotopes. Dissertation, Michigan State UniversityGoogle Scholar
  19. Tobler L, Bayo S, Wyttenbach A (1988) Deposition of Cs-134/137 from Chernobyl fallout on Norway spruce and forest soil and its incorporation into spruce twigs. J Environ Radioact 6:225–245Google Scholar
  20. Trautner F (1988) Entwicklung und Anwendung von Meßsystemen zur Untersuchung der chemischen und physikalischen Eigenschaften von Nebelwasser und dessen Deposition auf Fichten. Dissertation an der Fakultät Biologie, Chemie und Geowiss, Bayreuth, pp 1–160Google Scholar
  21. Tukey HB, Witwer SH, Bukovac MJ (1961) Absorption of radionuclides by aboveground plant parts and movement within the plant. Agric Food Chem 9:106–113Google Scholar
  22. Wyttenbach A, Tobler L (1988) The seasonal variation of 20 elements in 1st and 2nd year of Norway spruce,Picea abies (L.) Karst. Trees 2:52–64Google Scholar
  23. Yamagata N, Matsuda S, Chiba M (1969) Radioecology of Cs-137 and Sr-90 in a forest. J Radiat Res 10:107–112Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. Ertel
    • 1
  • H. Ziegler
    • 2
  1. 1.GSF-Institut für StrahlenschutzNeuherbergGermany
  2. 2.Institut für Botanik und Mikrobiologie der Technischen UniversitätMünchenGermany

Personalised recommendations