Advertisement

Radiation and Environmental Biophysics

, Volume 33, Issue 2, pp 91–109 | Cite as

Calculations of heavy-ion track structure

  • M. Krämer
  • G. Kraft
Article

Abstract

A Monte Carlo model is presented to study details of the energy deposition inside tracks of heavy charged particles in water vapor. The input data for most of the calculations based on the binary encounter approximation are double-differential cross sections for electron emission after heavy-ion impact. The paths of the liberated electrons are simulated, taking into account elastic scattering, ionization, and excitation. Each basic interaction of an electron or heavy ion is treated individually. Radial dose distributions and specific energy deposition are calculated for projectiles from protons to uranium in the energy range from one to several hundred megaelectron volts per unified atomic mass unit. Good agreement with measurements in tissue-equivalent gas and propane is obtained for light and medium-heavy projectiles, whereas for heavy projectiles such as uranium, deviations around a factor of 2–3 are observed.

Keywords

Uranium Energy Deposition Monte Carlo Model Track Structure Atomic Mass Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aufderheide E, Rink H, Hieber I, Kraft G (1985) Heavy ion effects on cellular DNA: strand break induction and repair. Int J Radiat Biol 5:779–790Google Scholar
  2. 2.
    Barkas WH (1963) Nuclear research emulsions (vol 1). Academic Press, New YorkGoogle Scholar
  3. 3.
    Barrett JL, Hays PB (1976) Spatial distribution of energy deposited in nitrogen by electrons. J Chem Phys 64(2):743–750Google Scholar
  4. 4.
    Benton EV (1968) Study of charged particle tracks in cellulose nitrate. US Naval Radiologic Defense Laboratory TR 68-14Google Scholar
  5. 5.
    Berger MJ (1963) Monte Carlo calculation of the penetration and diffusion of fast charged particles. Methods Comp Phys 1:135–215Google Scholar
  6. 6.
    Berkowitz J (1979) Photoabsorption, photoionization, and photoelectron spectroscopy. Academic Press, New YorkGoogle Scholar
  7. 7.
    Bethe HA (1930) Zur Theorie des Durchganges schneller Korpuskularstrahlen durch Materie. Ann Phys (Leipzig) 5:325–400Google Scholar
  8. 8.
    Bonsen TF, Vriens L (1970) Angular distribution of electrons ejected by charged particles. Pbysica 47:307–319Google Scholar
  9. 9.
    Butts JJ, Katz R (1967) Theory of RBE for heavy ion bombardment of dry enzymes and viruses. Radiat Res 30:855–871Google Scholar
  10. 10.
    Chatterjee A, Holley WR (1991) Energy deposition mechanisms and biochemical aspects of DNA strand breaks by ionizing radiation. Int J Quant Chem 39:709–727Google Scholar
  11. 11.
    Chatterjee A, Schaefer HJ (1976) Microdosimetric structure of heavy ion tracks in tissue. Radiat Environ Biophys 13:215–227Google Scholar
  12. 12.
    Colautti P, Talp G, Tornielli G (1992) Measurements of ionization distributions at nonometre level. In: Chadwick KH, Moschini G, Varma MN (eds) Biophysical modelling or radiation effects. Adam Hilger, Brussels, pp 269–276Google Scholar
  13. 13.
    Combecher D (1980) Measurement of W values of low-energy electrons in several gases. Radiat Res 84:189–218Google Scholar
  14. 14.
    Grosswendt B, Waibel E (1978) Transport of low energy electrons in nitrogen and air. Nucl Instrum Methods 155:145–156Google Scholar
  15. 15.
    Grün AE (1957) Lumineszenz-photometrische Messungen der Energieabsorption im Strahlungsfeld von Electronenquellen. Z Naturforsch 12a:89–95Google Scholar
  16. 16.
    Heilmann J, Rink H, Taucher-Scholz G, Kraft G (1993) DNA strand break induction and rejoining and cellular recovery in mammalian cells after heavy-ion irradiation. Radiat Res 135:46–55Google Scholar
  17. 17.
    Kelbch CH, Olson RE, Schmidt S, Schmidt-Böcking H, Hagmann S (1989) Unexpected angular distribution of theδ-electron emission in 1.4 MeV/u U33+ rare gas collisions. J Phys B 22:2171–2178Google Scholar
  18. 18.
    Kieffer L (1971) Low-energy electron-collision cross-section data. Atomic Data 2:293Google Scholar
  19. 19.
    Kraft G (1987) Radiobiological effects of very heavy ions. Nucl Sci Appl 3:1–28Google Scholar
  20. 20.
    Metting NF, Rossi HH, Braby LA, Kliauga PJ, Howard J, Zaider M, Schimmerling W, Wong M, Rapkin M (1988) Microdosimetry near the trajectory of high-energy heavy ions. Radiat Res 116:183–195Google Scholar
  21. 21.
    Moliere G (1948) Theorie der Streuung schneller geladener Teilchen. Z Naturforsch 3a:78–97Google Scholar
  22. 22.
    Northcliffe LC, Schilling RF (1970) Range and stopping-power tables for heavy ions. Nucl Data Tables A 7:233Google Scholar
  23. 23.
    Opal JB, Beaty EC, Peterson WK (1972) Tables of secondary-electron-production cross sections. Atomic Data 4:209–253Google Scholar
  24. 24.
    Paretzke HG (1988) Simulation von Elektronenspuren im Energiebereich 0.01–10 keV in Wasserdampf. GSF-Forschungszentrum für Umwelt and Gesundheit, Bericht 24/88Google Scholar
  25. 25.
    Paretzke HG, Berger MJ (1978) Stopping power and energy degradation for electrons in water vapor. In: Booz J, Ebert HG (eds) Proceedings of the 6th symposium on microdosimetry. Harwood, Brussels, pp 749–758Google Scholar
  26. 26.
    Rossi HH (1968) Microscopic energy distribution in irradiated matter. In: Attix FH, Roesch WC (eds) Radiation dosimetry (vol 1). Academic Press, New York, pp 43–92Google Scholar
  27. 27.
    Schmidt-Boecking H, Ramm U, Kraft G, Ullrich J, Berg H, Kelbch C, Olson RE, Dubois R, Hagmann S, Jiazhen F (1992)δ-Electron emission in fast heavy ion-atom collisions. Adv Space Res 12:7–15Google Scholar
  28. 28.
    Scholz M, Kraft G (1992) A parameter-free track structure model for heavy ion action cross section. In: Chadwick KH, Moschini G, Varma MN (eds) Biophysical modelling of radiation effects. Adam Hilger, Brussels, pp 185–192Google Scholar
  29. 29.
    Schutten, J, deHeer FJ, Moustafa HR, Boerboom AJH, Kistemaker J (1966) Gross- and partial-ionization cross sections for electrons on water vapor in the energy range 0.1–20 keV. J Chem Phys 44(10):3924–3928Google Scholar
  30. 30.
    Siegbahn K Nordling C, Johannson G, Hedman J, Hedén PF, Humrin K, Gelius U, Bergmark T, Werme LO, Manne R, Baer Y (1971) ESCA applied to free molecules. North Holland, Amsterdam, pp 82–85Google Scholar
  31. 31.
    Slater JC (1960) Quantum theory of atomic structure (vol 1). McGraw-Hill, New YorkGoogle Scholar
  32. 32.
    Toburen LH, Wilson WE (1977) Energy and angular distributions of electrons ejected from water vapor by 0.3–1.5 MeV protons. J Chem Phys 66(11):5202–5213Google Scholar
  33. 33.
    Toburen LH, Wilson WE, Popovich RJ (1980) Secondary electron emission from ionization of water vapor by 0.3- to 2.0-MeV He+ and He2+ ions. Radiat Res 82:27–44Google Scholar
  34. 34.
    Toburen LH, Braby LA, Metting NF, Kraft G, Scholz M, Kraske F, Schmidt-Böcking H, Dörner R, Seip R (1990) Radial distributions of energy deposited along charged particle tracks. Radiat Prot Dosimetry 31(1/4):199–203Google Scholar
  35. 35.
    Varma MN, Baum JW (1980) Energy deposition in nanometer regions by 377 MeV/Nucleon20Ne ions. Radiat Res 81:355–363Google Scholar
  36. 36.
    Varma MN, Paretzke HG, Baum JW, Lyman JT, Howard J (1976) Dose as a function of radial distance from a 930 MeV4He ion beam. In: Booz J, Ebert HG, Smith BGR (eds) Proceedings of the 5th symposium on microdosimetry. Luxembourg, Commission of the European Communities, pp 75–95Google Scholar
  37. 37.
    Varma MN, Baum JW, Kuehner AV (1977) Radial dose, LET, and W for160 ions in N2 and tissue-equivalent gases. Radiat Res 70:511–518Google Scholar
  38. 38.
    Varma MN, Baum JW, Kuehner AV (1980) Stopping power and radial dose distribution for 42 MeV bromine ions. Phys Med Biol 25/4:651–656Google Scholar
  39. 39.
    Trajmar S, Register DF, Chutjian A (1983) Electron scattering by molecules. II. Experimental methods and data. Phys. Rep 97/5:219–356Google Scholar
  40. 40.
    Wingate CL, Baum JW (1976) Measured radial distributions of dose and LET for alpha and proton beams in hydrogen and tissue-equivalent gas. Radiat Res 65:1–19Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. Krämer
    • 1
  • G. Kraft
    • 1
  1. 1.Gesellschaft für Schwerionenforschung, BiophysikDarmstadtGermany

Personalised recommendations