Advertisement

Communications in Mathematical Physics

, Volume 112, Issue 3, pp 447–470 | Cite as

Absence of divergences in type II and heterotic string multi-loop amplitudes

  • A. Restuccia
  • J. G. Taylor
Article

Abstract

A detailed analysis is given of the two main types of degeneration of Riemann surface of arbitrary genus by domain variational theory. Explicit estimates for first and third Abelian functions are given. These estimates are used to analyse the possible divergences of type II or heterotic superstring multiloop amplitudes for the scattering of massless particles. They are all shown to be finite at arbitrary loop order.

Keywords

Neural Network Statistical Physic Detailed Analysis Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramond, P.: Dual theory for free fermions. Phys. Rev. D3, 2415 (1971); Neveu, A., Schwarz, J.H.: Factorizable dual model of pions. Nucl. Phys. B31, 86 (1971); Green, M.B., Schwarz, J.H.: Anomaly cancellations in supersymmetricD = 10 gauge theory and superstring theory. Phys. Lett.149B, 117 (1984)Google Scholar
  2. 2.
    Gross, D.G., Harvey, J.A., Martinec, E., Rohm, R.: Heterotic string. Phys. Rev. Lett.54, 502 (1985); ibid, Heterotic string theory (I). The free heterotic string. Nucl. Phys. B256, 253 (1985), ibid. In: Heterotic string theory II: The interacting string. Nucl. Phys. B. (to appear)Google Scholar
  3. 3.
    Green M.B., Schwarz, J.H.: Supersymmetrical string theories. Phys. Lett.109B, 444 (1982)Google Scholar
  4. 4.
    Candelas, P., Horowitz, H., Strominger A., Witten, E.: Vacuum configurations for superstrings. Nucl. Phys. B258, 46 (1985)Google Scholar
  5. 5.
    Mandelstam, S.: Review of aspects of string theory. LPTENS preprint 85/13, May 1985, and to appear In: Proc. of the Niels Bohr Conference on “Recent developments in quantum field theory”; Martinec, E.: Nonrenormalization theorems and fermionic string finiteness. Phys. Letts.171B, 189 (1986)Google Scholar
  6. 6.
    Gervais, J., Sakita, B.: Ghost-free string picture of Veneziano model. Phys. Rev. Lett.30, 716 (1973); Mandelstam, S.: Dual-resonance models. Phys. Rep. C13, 259 (1974)Google Scholar
  7. 7.
    Mandelstam, S.: Interacting-string picture of dual-resonance models. Nucl. Phys. B64, 205 (1973); Interacting-string picture of the Neveu-Schwarz-Ramond model. ibid69, 77 (1974); Lorentz properties of the three-string vertex. ibid83, 413 (1974)Google Scholar
  8. 8.
    Goddard, P., Goldstone, J., Rebbi, C., Thorn, C.B.: Quantum dynamics of a massless relativistic string. Nucl. Phys. B56, 109 (1973)Google Scholar
  9. 9.
    Green, M.B., Schwarz, J.H.: Superstring field theory. Nucl. Phys. B243, 475 (1984)Google Scholar
  10. 10.
    Kaku, M., Kikkawa, K.: Field theory of relativistic string. I. Trees. Phys. Rev. D10, 1110 (1974); ibid ×, 1823 (1974)Google Scholar
  11. 11.
    Restuccia, A., Taylor, J.G.: On multi-loop closed superstring amplitudes I: Construction KCL preprint April 1986; ibid: On the construction of higher-loop closed superstring amplitudes. Phys. Lett.174B, 56 (1986); ibid: Inexact modes, holomorphicity and modular invariance in light-cone gauge strings and superstrings. Phys. Lett.192B, 89 (1987); ibid: The short-string limit for multi-loop superstring amplitudes. Phys. Lett. B (to appear); Taylor, J.G.: On the quantisation of strings and superstrings in the light cone gauge. Proc. Int. Workshop on Constrained Dynamics, Florence, May 1986, Singapore: World Scient.; Restuccia, A., Taylor, J.G.: The construction of multi-loop superstring amplitudes in the light-cone gauge, KCL preprint, September 1986Google Scholar
  12. 12.
    Ahlfors, L.: In: Analytic functions. pp. 45–66, Princeton N.J.: Princeton University Press 1960Google Scholar
  13. 13.
    Shapiro, J.A.: Renormalization of dual models. Phys. Rev. D11, 2937 (1975); Ademollo, M., D'Adda, A., D'Auria, R., Gliozzi, F., Napolitano, E., Sciuto, S.: Soft dilatons and scale renormalization in dual theories. Nucl. Phys. B94, 221 (1975); Kaku, M., Scherk, J.: Divergence of the two-loop planar graph in the dual-resonance model. Phys. Rev. D3, 430 (1975); Alessandrini, V., Amati, D.: Properties of dual multiloop amplitudes. Nuovo Cimento4A, 793 (1971)Google Scholar
  14. 14.
    Scherk, J.: An introduction to the theory of dual models and strings. Rev. Mod. Phys.47, 123 (1975)Google Scholar
  15. 15.
    Green, M.B., Schwarz, J.H.: Infinity cancellations inSO (32) superstring theory. Phys. Lett.151B, 1 (1985)Google Scholar
  16. 16.
    Gava, E., Iengo, R., Jayaraman, T., Ramachandran, R.: Multiloop divergences in the closed bosonic string theory. Phys. Lett.168B, 201 (1986)Google Scholar
  17. 17.
    Belavin, A.A., Knizhnik, V.G.: Algebraic geometry and the geometry of quantum strings. Phys. Lett.168B, 201 (1986); Catenacci, R., Cornalba, M., Martellini, M., Reina, C.: Algebraic geometry and path integrals for closed strings. Phys. Lett.172B, 328 (1986). Bost, J.B., Jolicoeur, T.: A holomorphic property and the critical dimension in string theory from an index theorem. Phys. Lett.174B, 273 (1986); Gomez, C.: Modular invariance and compactification of the moduli space. Phys. Lett.175B, 32 (1986)Google Scholar
  18. 18.
    Belavin, A.A., Knizhnik, V.G.: Nucl. Phys. B (to appear) and ref. [17]Google Scholar
  19. 19.
    Schiffer, M., Spencer, D.: Functionals of finite Riemann surfaces. Princton, NJ: Princeton University Press 1954Google Scholar
  20. 20.
    Restuccia, A., Taylor, J.G.: Divergence analysis of closed superstrings. KCL preprint Oct 1985; ibid: Finiteness of type II superstring amplitudes and finiteness of superstring amplitudes. Phys. Lett.187B, 267, 273 (1987); Taylor, J.G.: Is there only one finite superstring?, Fradkin Festschrift, Adam Hilger (Publ). (to appear)Google Scholar
  21. 21.
    Lebowitz, J.: In: Advances in the theory of Riemann surfaces. Annals of Math. Studies, L. Ahlfors et al. (ed.), Princeton, NJ: Princeton University Press 1971, p. 265Google Scholar
  22. 22.
    Fay, J.: Theta functions on Riemann surfaces. Lecture Notes in Mathematics, Vol.352, Berlin, Heidelberg, New York: Springer 1973Google Scholar
  23. 23.
    Masur, H.: Duke Math. J.43, 623 (1976)Google Scholar
  24. 24.
    Wolpert, L.S.: Asymptotics of length spectra and the Selberg Zeta-Function. College Park (Md) preprint (to appear)Google Scholar
  25. 25.
    Bressloff, P., Restuccia, A., Taylor, J.G.: A functional light-cone gauge construction of heterotic string amplitudes. Phys. Lett.190B, 69 (1987)Google Scholar
  26. 26.
    Alvarez-Gaumé, L., Moore, G., Vafa, C.: Theta functions, modular invariance and strings. Commun. Math. Phys.106, 1 (1986)Google Scholar
  27. 27.
    Siegel, C.L.: Topics in complex function theory. Vols. 1, 2, and 3. New York: Wiley 1971Google Scholar
  28. 28.
    Lee, R., Weintraub, S.H.: Topology24, 391 (1985)Google Scholar
  29. 29.
    Yahikozawa, S.: Evaluation of the one-loop amplitude in heterotic string theory. Phys. Lett.166B, 135 (1986)Google Scholar
  30. 30.
    This was suggested by S. Mandelstam; we would like to thank him for raising it as a possibilityGoogle Scholar
  31. 31.
    Mumford, D.: Enseign. Math.23, 39 (1977)Google Scholar
  32. 32.
    Alessandrini, V.: A general approach to dual multiloop diagrams. Nuovo Cimento2A, 321 (1971)Google Scholar
  33. 33.
    Bers, L.: Bull Am. Math. Soc.67, 206 (1961)Google Scholar
  34. 34.
    Mandelstam, S.: The interacting string picture and functional integration. Berkeley preprint UCB-PTH-85/47, Proc. Santa Barbara Workshop on Unified String Theories (to be published)Google Scholar
  35. 35.
    Schwarz, J.H.: Superstring theory. Phys. Rep.89, 223 (1982)Google Scholar
  36. 36.
    Frampton, P.H., Kshirsagar, A.K., Ng, Y.J.: Regularisation of open superstring from orientable closed surface. North Carolina preprint IFP-273-UNC, June 1986; Ardalan, F., Arfaei, H., Parvizi, J.: Physical regularisation and finiteness of superstring theories. Sharif Univ. preprint, 1986; but see also Potting, R., Shapiro, J.A.: Comment on proof of one-loop finiteness of type-ISO(32) Superstring Theory. Rutgers Univ. preprint RU-86-26Google Scholar
  37. 37.
    Restuccia, A., Taylor, J.G.: in preparationGoogle Scholar
  38. 38.
    Greensite, J., Klinkammer, F.R.: New interactions for superstrings. Nucl. Phys. B281, 269 (1987)Google Scholar
  39. 39.
    Linder, N., Taylor, J.G.: In preparationGoogle Scholar
  40. 40.
    Restuccia, A., Taylor, J.G.: In preparationGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • A. Restuccia
    • 1
  • J. G. Taylor
    • 2
  1. 1.Department of PhysicsSimon Bolivar UniversityCaracas
  2. 2.Department of MathematicsKing's College LondonLondonUnited Kingdom

Personalised recommendations