Advertisement

Communications in Mathematical Physics

, Volume 118, Issue 1, pp 119–161 | Cite as

Construction of analytic KAM surfaces and effective stability bounds

  • Alessandra Celletti
  • Luigi Chierchia
Article

Abstract

A class of analytic (possibly) time-dependent Hamiltonian systems withd degrees of freedom and the “corresponding” class of area-preserving, twist diffeomorphisms of the plane are considered. Implementing a recent scheme due to Moser, Salamon and Zehnder, we provide a method that allows us to construct “explicitly” KAM surfaces and, hence, to give lower bounds on their breakdown thresholds. We, then, apply this method to the HamiltonianHy2/2+ε(cosx+cos(x−t)) and to the map (y,x)→(y+ε sinx,x+y+ε sinx) obtaining, with the aid of computer-assisted estimations, explicit approximations (within an error of ∼10−5) of the golden-mean KAM surfaces for complex values of ε with |ε| less or equal than, respectively, 0.015 and 0.65. (The experimental numerical values at which such surfaces are expected to disappear are about, respectively, 0.027 and 0.97.) A possible connection between break-down thresholds and singularities in the complex ε-plane is pointed out.

Keywords

Neural Network Statistical Physic Complex System Lower Bound Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, V.I.: Proof of a Theorem by A.N. Kolmogorov on the invariance of quasiperiodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv.18, 9 (1963)Google Scholar
  2. 2.
    Arnold, V.I., Avez, A.: Ergodic problems of classical mechanics. New York: Benjamin 1968Google Scholar
  3. 3.
    Aubry, S., Le Daeron, P.Y.: The discrete Frenkel-Kontorova model and its extensions. I. Physica8, 381 (1983)Google Scholar
  4. 4.
    Benettin, G., Galgani, L., Giorgilli, A.: Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part I. Commun. Math. Phys.113, 87 (1987)Google Scholar
  5. 5.
    Benettin, G., Gallavotti, G.: Stability of motions near resonances in quasi-integrable Hamiltonian systems. J. Stat. Phys.44, 293 (1986)Google Scholar
  6. 6.
    Braess, D., Zehnder, E.: On the numerical treatment of a small divisor problem. Numer. Math.39, 269 (1982)Google Scholar
  7. 7.
    Celletti, A., Chierchia, L.: Rigorous estimates for a computer-assisted KAM theory. J. Math. Phys.28, 2078 (1987)Google Scholar
  8. 8.
    Celletti, A., Falcolini, C., Porzio, A.: Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum. Ann. Inst. Henri Poincaré47, 85 (1987)Google Scholar
  9. 9.
    Chirikov, B.V.: A universal instability of many dimensional oscillator systems. Phys. Rep.52, 263 (1979)Google Scholar
  10. 10.
    Eckmann, J.-P., Wittwer, P.: Computer methods and Borel summability applied to Feigenbaum's equation. Lecture Notes in Physics, Vol. 227. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  11. 11.
    Eliasson, H.: Absolutely convergent series expansions for quasiperiodic motions, preprint. Univ. of Stockholm (1987)Google Scholar
  12. 12.
    Escande, D.F.: Stochasticity in classical Hamiltonian systems: Universal aspects. Phys. Rep.121, 165 (1985)Google Scholar
  13. 13.
    Escande, D.F.: Private communicationGoogle Scholar
  14. 14.
    Escande, D.F., Doveil, F.: Renormalization method for computing the threshold of the largescale stochastic instability in two degrees of freedom Hamiltonian systems. J. Stat. Phys.26, 257 (1981)Google Scholar
  15. 15.
    Falcolini, C.: Private communicationGoogle Scholar
  16. 16.
    Gallavotti, G.: Perturbation theory for classical Hamiltonian systems. In: Scaling and self-similarity in physics. Fröhlich, J. (ed.) PPh. 7, Boston: Birkhäuser 1984Google Scholar
  17. 17.
    Greene, J.M.: A method for determining a stochastic transition. J. Math. Phys.20, 1183 (1979)Google Scholar
  18. 18.
    Hénon, M., Heiles, C.: The applicability of the third integral of motion: Some numerical experiments. Astron. J.69, 73 (1964)Google Scholar
  19. 19.
    Herman, M.: Sur le courbes invariantes par le difféomorphismes de l'anneau. Astérisque2, 144 (1986)Google Scholar
  20. 20.
    Iooss, G., Helleman, R.H.G., Stora, R. (eds.): Chaotic behaviour of deterministic systems. Amsterdam: North-Holland 1983Google Scholar
  21. 21.
    Kolmogorov, A.N.: On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian. Dokl. Akad. Nauk. SSR98, 469 (1954)Google Scholar
  22. 22.
    Lanford III, O.E.: Computer assisted proofs in analysis. Phys. A124, 465 (1984)Google Scholar
  23. 23.
    MacKay, R.S.: Transition to chaos for area-preserving maps. Lecture Notes in Physics, Vol. 247, p. 390. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  24. 24.
    MacKay, R.S., Percival, I.C.: Converse KAM: Theory and practice. Commun. Math. Phys.98, 469 (1985)Google Scholar
  25. 25.
    Mather, J.N.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology21, 457 (1982)Google Scholar
  26. 26.
    Mather, J.N.: Non-existence of invariant circles. Ergodic Theory Dyn. Syst.4, 301 (1984)Google Scholar
  27. 27.
    Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nach. Akad. Wiss. Göttingen, Math. Phys. K1. II1, 1 (1962)Google Scholar
  28. 28.
    Moser, J.: A rapidly convergent iteration method and non-linear partial differential equations. Ann. Scuola Norm. Sup. Pisa20, 265 (1966)Google Scholar
  29. 29.
    Moser, J.: Minimal solutions of variational problems on a torus. Ann. Inst. Henri Poincaré3, 229 (1986)Google Scholar
  30. 30.
    Moser, J.: Minimal foliations on a torus. Forschungsinstitut für Mathematik, ETH Zürich, September 1987Google Scholar
  31. 31.
    Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Russ. Math. Surv.32, 1 (1977)Google Scholar
  32. 32.
    Percival, I.C.: Variational principles for invariant tori and cantori, in nonlinear dynamics and the beam-beam interaction. AIP Conference Proceedings 57, p. 302. M. Month, J.C. Herrera (eds.). (1980)Google Scholar
  33. 33.
    Rüssmann, H.: On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus. Lecture Notes in Physics, Vol. 38, p. 598. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  34. 34.
    Rüssmann, H.: On the existence of invariant curves of twist mappings of an annulus. Lecture Notes in Mathematics, Vol. 1007, p. 677. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  35. 35.
    Salamon, D., Zehnder, E.: KAM theory in configuration space. Preprint 1987Google Scholar
  36. 36.
    Wayne, C.E.: The KAM theory of systems with short range interactions. I. Commun. Math. Phys.96, 311 (1984)Google Scholar
  37. 37.
    Wayne, C.E.: Bounds on the trajectories of a system of weakly coupled rotators. Commun. Math. Phys.104, 21 (1986)Google Scholar
  38. 38.
    Wisdom, J., Peale, S.J.: The chaotic rotation of Hyperion. Icarus58, 137 (1984)Google Scholar
  39. 39.
    (no author listed) Vax architecture handbook. Digital Equipment Corporation (1981)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Alessandra Celletti
    • 1
  • Luigi Chierchia
    • 1
  1. 1.Forschungsinstitut für Mathematik, ETH-ZentrumZürichSwitzerland

Personalised recommendations