Communications in Mathematical Physics

, Volume 125, Issue 3, pp 417–437 | Cite as

Exactly soluble diffeomorphism invariant theories

  • Gary T. Horowitz


A class of diffeomorphism invariant theories is described for which the Hilbert space of quantum states can be explicitly constructed. These theories can be formulated in any dimension and include Witten's solution to 2+1 dimensional gravity as a special case. Higher dimensional generalizations exist which start with an action similar to the Einstein action inn dimensions. Many of these theories do not involve a spacetime metric and provide examples of topological quantum field theories. One is a version of Yang-Mills theory in which the only quantum states onS3×R are the θ vacua. Finally it is shown that the three dimensional Chern-Simons theory (which Witten has shown is intimately connected with knot theory) arises naturally from a four dimensional topological gauge theory.


Neural Network Hilbert Space Gauge Theory Quantum Field Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witten, E.: Nucl. Phys.B311, 46 (1988)Google Scholar
  2. 2.
    Atiyah, M.: New invariants of three and four dimensional manifolds, to appear in the Symposium on the Mathematical Heritage of Hermann Weyl. Wells, R. et. al., (eds.). (Univ. of North Carolina, May 1987)Google Scholar
  3. 3.
    Witten, E.: Commun. Math. Phys.117, 353 (1988)Google Scholar
  4. 4.
    Witten, E.: Commun. Math. Phys.118, 411 (1988)Google Scholar
  5. 5.
    Baulieu, L., Grossman, B.: Phys. Lett.B212, 351 (1988); Phys. Lett.B214, 223 (1988); Yamron, J.: Phys. Lett.B213, 325 (1988)Google Scholar
  6. 6.
    Baulieu, L., Singer, I.: Topological Yang-Mills Symmetry, to appear in the proceedings of Conformal Field Theory and Related Topics (Annecy, France, March 1988); Brooks, R., Montano, D., Sonnenschein, J.: Phys. Lett.B214, 91 (1988)Google Scholar
  7. 7.
    Labastida, J., Pernici, M.: Phys. Lett.B212, 56 (1988)Google Scholar
  8. 8.
    Witten, E.: Commun. Math. Phys.121, 351–399 (1989)Google Scholar
  9. 9.
    Tseytlin, A.: J. Math. Phys.15, L105 (1982)Google Scholar
  10. 10.
    See e.g. Penrose, R.: In Magic without magic. Klauder, J. (ed.). San Franciscó Freeman 1972Google Scholar
  11. 11.
    See e.g. De Witt, B.: Phys. Rev.160, 1113 (1967)Google Scholar
  12. 12.
    Hartle, J., Hawking, S.: Phys. Rev.D28, 2960 (1983); Hartle, J.: In: 13th Texas Symposium on Relativistic Astrophysics. Ulmer M. (ed.). Singapore: World Scientific 1987; Vilenkin, A.: Phys. Rev.D33, 3560 (1986)Google Scholar
  13. 13.
    Teitelboim, C.: Phys. Lett.B167, 63 (1986)Google Scholar
  14. 14.
    Taubes, C.: Casson's Invariant and Gauge Theory. Harvard Univ. preprint (1988)Google Scholar
  15. 15.
    Floer, A.: Commun. Math. Phys.118, 215 (1988)Google Scholar
  16. 16.
    Isenberg, J., Nester, J.: In: General relativity and gravitation Vol.1, Held, A. (ed.). New York: Plenum Press 1980; Hehl, F., von der Heyde, P., Kerlick, G., Nester, J.: Rev. Mod. Phys.48, 393 (1976)Google Scholar
  17. 17.
    Hayashi, N., Shirafuji, T.: Phys. Rev.D19, 3524 (1979)Google Scholar
  18. 18.
    Witten, E.: Phys. Lett.B206, 601 (1988); Labastida, J., Pernici, M.: Phys. Lett.B213, 319 (1988)Google Scholar
  19. 19.
    Ashtekar, A.: Phys. Rev. Lett.57, 2244 (1986); Phys. Rev.D36, 1587 (1987); New Perspectives in Canonical Gravity. Naples: Bibliopolis 1988Google Scholar
  20. 20.
    Samuel, J.: Pramana28, L429 (1987); Jacobson, T., Smolin, L.: Phys. Lett.B196, 39 (1987); Class. Quantum Grav.5, 583 (1988)Google Scholar
  21. 21.
    Rovelli, C., Smolin, L.: Loop space representation of quantum gravity. Rome preprint; Phys. Rev. Lett.61, 1155 (1988)Google Scholar
  22. 22.
    For a review see Kuchar, K.: In: Quantum gravity 2. Isham, C., Penrose, R., Sciama, D. (eds.). Oxford: Oxford University Press 1981Google Scholar
  23. 23.
    For a reviews, see Hartle, J.: In: High energy physics. Bowick, M., Gursey, F. (eds.). Singapore: World Scientific 1985; Misner, C.: In: Magic without Magic. Klauder, J. (ed.). San Francisco: Freeman 1972Google Scholar
  24. 24.
    Schwarz, A.: Lett. Math. Phys.2, 247 (1978)Google Scholar
  25. 25.
    Horowitz, G., Lykken, J., Rohm, R., Strominger, A.: Phys. Rev. Lett.57, 283 (1986); Hata, H., Itoh, K., Kugo, K., Kunitomo, H., Ogawa, K.: Phys. Lett.B175, 138 (1986)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Gary T. Horowitz
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations