Communications in Mathematical Physics

, Volume 117, Issue 4, pp 673–683 | Cite as

The action functional in non-commutative geometry

  • A. Connes


We establish the equality between the restriction of the Adler-Manin-Wodzicki residue or non-commutative residue to pseudodifferential operators of order −n on ann-dimensional compact manifoldM, with the trace which J. Dixmier constructed on the Macaev ideal. We then use the latter trace to recover the Yang Mills interaction in the context of non-commutative differential geometry.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, M.: On a trace functional for formal pseudodifferential operators and the symplectic structure of the Korteweg of Wries type equations. Invent. Math.50, 219–248 (1979)Google Scholar
  2. 2.
    Alvarez-Gaumé, L., Gomez, C.: New methods in string theory. Preprint CERN (1987)Google Scholar
  3. 3.
    Connes, A.: Non-commutative differential geometry. Publ. Math. IHES62, 257–360 (1985)Google Scholar
  4. 4.
    Connes, A., Rieffel, M.: Yang-Mills for non-commutative two tori. Contemp. Math.62, 237–266 (1987)Google Scholar
  5. 5.
    Connes, A.: Compact metric spaces, Fredholm modules and Hyperfiniteness. Preprint (1987). J. Ergodic Theory (to appear)Google Scholar
  6. 6.
    Dixmier, J.: Existence de traces non normales. C.R. Acad. Sci. Paris262, 1107–1108 (1966)Google Scholar
  7. 7.
    Gohberg, I., Krein, M.G.: Introduction to the theory of non-selfadjoint operators. Moscow (1985)Google Scholar
  8. 8.
    Manin, Y.I.: Algebraic aspects of non-linear differential equations. J. Sov. Math.11, 1–122 (1979)Google Scholar
  9. 9.
    Pressley, A., Segal, G.: Loop groups. Oxford: Oxford Science 1986Google Scholar
  10. 10.
    Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. IHES61, 5–65 (1985)Google Scholar
  11. 11.
    Weyl, H.: Classical groups. Princeton, NJ: Princeton University PressGoogle Scholar
  12. 12.
    Witten, E.: Non-commutative geometry and string field theoryGoogle Scholar
  13. 13.
    Wodzicki, M.: Local invariants of spectral assymmetry. Invent. Math.75, 143–178 (1984)Google Scholar
  14. 14.
    Guillemin, V.W.: A new proof of Weyl's formula on the asymptotic distribution of eigenvalues. Adv. Math.55, 131–160 (1985)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. Connes
    • 1
  1. 1.I.H.E.S.Bures-sur-YvetteFrance

Personalised recommendations