Mathematische Zeitschrift

, Volume 178, Issue 1, pp 125–142 | Cite as

On the number of faces of simplicial complexes and the purity of Frobenius

  • Peter Schenzel


Simplicial Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baclawski, K.: Whitney numbers of geometric lattices. Advances in Math.16, 125–138 (1975)Google Scholar
  2. 2.
    Baclawski, K.: Galois connections and the Leray spectral sequence. Advances in Math.25, 191–215 (1977)Google Scholar
  3. 3.
    Baclawski, K.: Cohen-Macaulay ordered sets. J. Algebra63, 226–258 (1980)Google Scholar
  4. 4.
    Bruggesser, H., Mani, P.: Shellable decompositions of cells and spheres. Math. Scand.29, 197–205 (1971)Google Scholar
  5. 5.
    Edwards, R.D.: Notices Amer. Math. Soc.22 A, 334 (1975)Google Scholar
  6. 6.
    Grothendieck, A.: Local cohomology. Lecture Notes in Mathematics41. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  7. 7.
    Hartshorne, R.: Residues and duality. Lecture Notes in Mathematics20. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  8. 8.
    Hochster, M.: Cohen-Macaulay rings, combinatorics, and simplicial complexes. Proceedings of the 2nd Oklahoma Ring Theory Conference, 1977, 171–223Google Scholar
  9. 9.
    Hochster, M.: Cyclic purity versus purity in excellent noetherian rings. Trans. Amer. Math. Soc.231, 463–488 (1977)Google Scholar
  10. 10.
    Hochster, M., Roberts, J.L.: The purity of Frobenius and local cohomology. Advances in Math.21, 117–172 (1976)Google Scholar
  11. 11.
    Klee, V.: The number of vertices of a convex polytope. Canad. J. Math.16, 701–720 (1964)Google Scholar
  12. 12.
    McMullen, P.: The maximum number of faces of a convex polytope. Mathematika17, 179–184 (1970)Google Scholar
  13. 13.
    McMullen, P., Shephard, G.C.: Convex polytopes and the Upper Bound Conjecture. London Mathematical Society Lecture Note Series3. Cambridge-London-New York: Cambridge University Press 1971Google Scholar
  14. 14.
    Motzkin, T.S.: Comonotone curves and polyhedra. Bull. Amer. Math. Soc.63, 35 (1957)Google Scholar
  15. 15.
    Munkres, J.: Topological results in combinatorics. PreprintGoogle Scholar
  16. 16.
    Reisner, G.A.: Cohen-Macaulay quotients of polynomial rings. Advances in Math.21, 30–49 (1976)Google Scholar
  17. 17.
    Rota, G.-C.: On the foundations of combinatorial theory I: Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete2, 340–368 (1964)Google Scholar
  18. 18.
    Rudin, M.E.: An unshellable triangulation of a tetrahedron. Bull. Amer. Math. Soc.64, 90–91 (1958)Google Scholar
  19. 19.
    Schenzel, P.: Applications of dualizing complexes to Buchsbaum rings. Advances in Math. (to appear)Google Scholar
  20. 20.
    Schenzel, P.: Local duality without dualizing complexes. PreprintGoogle Scholar
  21. 21.
    Sharp, R.Y.: Dualizing complexes for commutative Noetherian rings. Math. Proc. Cambridge Philos. Soc.78, 369–386 (1975)Google Scholar
  22. 22.
    Spanier, E.H.: Algebraic topology. New York-San Francisco-Toronto-London: McGraw-Hill 1966Google Scholar
  23. 23.
    Stanley, R.P.: The Upper Bound Conjecture and Cohen-Macaulay rings. Studies in Appl. Math.54, 135–142 (1975)Google Scholar
  24. 24.
    Stanley, R.P.: Cohen-Macaulay complexes. In: Higher Combinatorics. Advanced Study Institut Series, 1977, 51–62Google Scholar
  25. 25.
    Stanley, R.P.: Hilbert functions and graded algebras. Advances in Math.28, 57–83 (1978)Google Scholar
  26. 26.
    Stanley, R.P.: Finite lattices and Jordan-Hölder sets. Algebra Universalis4, 361–371 (1974)Google Scholar
  27. 27.
    Stanley, R.P.: Combinatorial reciprocity theorems. Advances in Math.14, 194–253 (1974)Google Scholar
  28. 28.
    Stanley, R.P.: Balanced Cohen-Macaulay complexes. Trans. Amer. Math. Soc.249, 135–157 (1979)Google Scholar
  29. 29.
    Stückrad, J., Vogel, W.: Toward a theory of Buchsbaum singularities. Amer. J. Math.100, 727–746 (1978)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Peter Schenzel
    • 1
  1. 1.Sektion Mathematik der Martin-Luther-Universität Halle-WittenbergHalleGerman Democratic Republic

Personalised recommendations