Mathematische Zeitschrift

, Volume 178, Issue 1, pp 1–36 | Cite as

Aspherical group presentations

  • Ian M. Chiswell
  • Donald J. Collins
  • Johannes Huebschmann


Group Presentation Aspherical Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 0.
    Brown, R., Huebschmann, J.: Identities among relations, in “Low-dimensional Topology”, Proc. Bangor Symp. 1979,Ed. R. Brown and T.L. Thickstun, London Math. Soc. Lecture Note Series, Cambridge University Press, 1981 (to appear)Google Scholar
  2. 1.
    Burns, R.G.: A proof of the Freiheitssatz and the Cohen-Lyndon theorem for one-relator groups. J. London Math. Soc.7, 508–514 (1974)Google Scholar
  3. 2.
    Chiswell, I.M.: Exact sequences associated with a graph of groups. J. Pure Appl. Alg.8, 63–74 (1976)Google Scholar
  4. 3.
    Cohen, D.E.: Subgroups of HNN-groups. J. Austral. Math. Soc.17, 394–405 (1974)Google Scholar
  5. 4.
    Cohen, D.E.: Combinatorial group theory: a topological approach. Queen Mary College Mathematics Notes, London, 1977Google Scholar
  6. 5.
    Cohen, D.E., Lyndon, R.C.: Free bases for normal subgroups of free groups. Trans. Amer. Math. Soc.108, 528–537 (1963)Google Scholar
  7. 6.
    Collins, D.J., Huebschmann, J.: Spherical diagrams and identities among relations. In preparationGoogle Scholar
  8. 7.
    Gildenhuys, D.: Classification of soluble groups of cohomological dimension two. Math. Z.166, 21–25 (1979)Google Scholar
  9. 8.
    Gutierrez, M.A., Ratcliffe, J.G.: On the second homotopy group. Quart. J. Math. Oxford (2),32, 45–56 (1981)Google Scholar
  10. 9.
    Hempel, J.: 3-Manifolds, Ann. of Math. Studies86, Princeton: Princeton University Press 1976Google Scholar
  11. 10.
    Howie, J., Schneebeli, H.R.: Cellular actions and groups of finite quasiprojective dimension. Math. Z.170, 85–90 (1980)Google Scholar
  12. 11.
    Huebschmann, J.: Cohomology theory of aspherical groups and of small cancellation groups. J. Pure Appl. Alg.14, 137–143 (1979)Google Scholar
  13. 12.
    Huebschmann, J.: The homotopy type of a combinatorially aspherical presentation. Math. Z.173, 163–169 (1980)Google Scholar
  14. 13.
    Huebschmann, J.: Aspherical 2-complexes and an unsettled problem of J.H.C. Whitehead. Submitted for publicationGoogle Scholar
  15. 14.
    Huebschmann, J.: Hierarchies, Cohen-Lyndon bases and the asphericity of regions in the 3-sphere. In preparationGoogle Scholar
  16. 15.
    Karrass, A., Solitar, D.: On a theorem of Cohen and Lyndon about free bases for normal subgroups. Canad. J. Math.24, 1086–1091 (1972)Google Scholar
  17. 16.
    Lyndon, R.C.: Cohomology theory of groups with a single defining relation. Ann. of Math.52, 650–665 (1950)Google Scholar
  18. 17.
    Lyndon, R.C.: Length functions in groups. Math. Scand.12, 209–234 (1963)Google Scholar
  19. 18.
    Lyndon, R.C.: On Dehn's algorithm. Math. Ann.166, 208–228 (1966)Google Scholar
  20. 19.
    Lyndon, R.C., Schupp, P.E.: Combinatorial group theory. Ergebnisse der Math., Bd.89. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  21. 20.
    Massey, W.S.: Algebraic topology: an introduction. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  22. 21.
    Papakyriakopoulos, C.D.: On Dehn's lemma and the asphericity of knots. Ann. of Math.66, 1–26 (1957)Google Scholar
  23. 22.
    Peiffer, R.: Über Identitäten zwischen Relationen. Math. Ann.121, 67–99 (1949)Google Scholar
  24. 23.
    Reidemeister, K.: Über Identitäten von Relationen. Abh. Math. Sem. Univ. Hamburg16, 114–118 (1949)Google Scholar
  25. 24.
    Rourke, C.R., Sanderson, B.J.: Introduction to piecewise linear topology. Ergebnisse der Math. Bd.69. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  26. 25.
    Serre, J.-P.: Arbres, amalgames,SL 2. Astérisque46 (1977)Google Scholar
  27. 26.
    Sieradski, A.: Combinatorial isomorphisms and combinatorial homotopy equivalences. J. Pure Appl. Alg.7, 59–95 (1976)Google Scholar
  28. 27.
    Sieradski, A.: Framed links for Peiffer identities. Math. Z.175, 125–137 (1980)Google Scholar
  29. 28.
    Swan, R.G.: Groups of cohomological dimension one. J. Algebra12, 585–610 (1969)Google Scholar
  30. 29.
    Trotter, H.F.: Homology of groups systems with applications to knot theory. Ann. of Math.76, 464–498 (1962)Google Scholar
  31. 30.
    Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. of Math.87, 56–88 (1968)Google Scholar
  32. 31.
    Weinbaum, C.M.: The word and conjugacy problem for the knot group of any tame alternating knot. Proc. Amer. Math. Soc.22, 22–26 (1971)Google Scholar
  33. 32.
    Whitehead, J.H.C.: On adding relations to homotopy groups. Ann. of Math.42, 409–428 (1941)Google Scholar
  34. 33.
    Whitehead, J.H.C.: Combinatorial homotopy II. Bull. Amer. Math. Soc.55, 453–496 (1949)Google Scholar
  35. 34.
    Zieschang, H., Vogt, E., Coldewey, H.D.: Surfaces and planar discontinuous groups, Lecture Notes in Mathematics,835. Berlin-Heidelberg-New York: Springer 1980 (Revised and expanded translation of: Flächen und ebene diskontinuierliche Gruppen, Lecture Notes in Mathematics,122. Berlin-Heidelberg-New York: Springer 1970)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Ian M. Chiswell
    • 1
  • Donald J. Collins
    • 1
  • Johannes Huebschmann
    • 2
  1. 1.Department of Pure Mathematics, Queen Mary CollegeUniversity of London)LondonUK
  2. 2.Mathematisches Institut der UniversitätHeidelbergFederal Republic of Germany

Personalised recommendations