Microchimica Acta

, Volume 61, Issue 6, pp 925–933 | Cite as

Reduction of iodate by hydrazine: Application of the iodide ion selective electrode to the uncatalyzed reaction

  • R. A. Hasty


The reduction of iodate by hydrazine was examined by use of the iodide ion selective electrode. The rate of reduction of iodate at iodide concentrations below 5 × 10−5M is controlled by the direct reduction by hydrazine. At higher iodide concentrations, the rate of reduction of iodate is controlled by the reduction of iodate by iodide with the subsequent reduction of iodine by hydrazine. Application of the reaction to the determination of μg quantities of iodine is discussed.


Physical Chemistry Analytical Chemistry Inorganic Chemistry Iodine Iodide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die Reduktion von Jodat mit Hydrazin wurde mit Hilfe einer jodid-spezifischen Elektrode untersucht. Das Ausmaß der Jodatreduktion bei Jodid-konzentrationen unter 5·10−5 Mol/l wurde durch direkte Reduktion mit Hydrazin kontrolliert. Bei höheren Jodidkonzentrationen wurde das Reduk-tionsausmaß des Jodats mit Hilfe der Jodat-Jodid-Reaktion und erst dann durch Reduktion des Jodids mit Hydrazin kontrolliert. Die Anwendung auf die Bestimmung von μg-Mengen Jodid wurde diskutiert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Svehla, Analyst94, 513 (1969).Google Scholar
  2. 2.
    J. Bognár and S. Sarosi, Analyt. Chim. Acta29, 406 (1963).Google Scholar
  3. 3.
    R. A. Hasty, paper 223 presented at 24th Northwest Regional Meeting, ACS, Salt Lake City, Utah, June, 1969.Google Scholar
  4. 4.
    G. S. Deshmukh and M. G. Bapat, Z. analyt. Chem.157, 269 (1957).Google Scholar
  5. 5.
    S. Dushman, J. Phys. Chem.8, 453 (1904).Google Scholar
  6. 6.
    E. Abel and F. Stadler, Z. physik. Chem.A122, 49 (1926); E. Abel and K. Hilferding, Z. physik. Chem.A136, 186 (1928); E. Abel, Z. physik. Chem.A154, 167 (1931).Google Scholar
  7. 7.
    W. C. Bray, J. Amer. Chem. Soc.52, 3580 (1930).Google Scholar
  8. 8.
    A. F. M. Barton and G. A. Wright, J. Chem. Soc.A 1968, 2096.Google Scholar
  9. 9.
    P. Beran and S. Bruckenstein, J. Phys. Chem.72, 3630 (1968).Google Scholar
  10. 10.
    R. M. Fuoss and C. A. Kraus, J. Amer. Chem. Soc.55, 476 (1933).Google Scholar
  11. 11.
    L. G. Sillen and A. E. Martell, Stability Constants, London: Chemical Society. 1964.Google Scholar
  12. 12.
    K. J. Morgan, M. G. Peard, and C. F. Cullis, J. Chem. Soc.1951, 1865.Google Scholar
  13. 13.
    W. C. E. Higginson, D. Sutton, and P. Wright, J. Chem. Soc.1953, 1380.Google Scholar
  14. 14.
    Unpublished data.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • R. A. Hasty
    • 1
  1. 1.Department of ChemistryMontana State UniversityBozemanUSA

Personalised recommendations