Advertisement

Communications in Mathematical Physics

, Volume 120, Issue 2, pp 233–248 | Cite as

On the invariant mass conjecture in general relativity

  • Piotr T. Chruściel
Article

Abstract

An asymptotic symmetries theorem is proved under certain hypotheses on the behaviour of the metric at spatial infinity. This implies that the Einstein-von Freud-ADM mass can be invariantly assigned to an asymptotically flat four dimensional end of an asymptotically empty solution of Einstein equations if the metric is a no-radiation metric or if the end is defined in terms of a collection of boost-type domains.

Keywords

Neural Network Statistical Physic General Relativity Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AD]
    Abbott, L. F., Deser, S.: Stability of gravity with a cosmological constant. Nucl. Phys.B195, 76–96 (1982)Google Scholar
  2. [ADM]
    Arnowitt, R., Deser, S., Misner, C. W.: The dynamics of general relativity. In: Gravitation, on introduction to current research. Witten L. (ed). New York: J. Wiley 1962Google Scholar
  3. [As]
    Ashtekar, A.: Asymptotic structure of the gravitational field. In: General relativity and gravitation: one hundred years after the birth of albert Einstein. vol. 2, Held A. (ed.), pp. 37–70. New York: Plenum Press 1980Google Scholar
  4. [AH]
    Ashtekar, A., Hansen, R. O.: A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries and conserved quantities at spatial infinity. J. Math. Phys.19, 1542–1566 (1978)Google Scholar
  5. [Ba]
    Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math.39, 661–693 (1986)Google Scholar
  6. [BM]
    Bizoń, P. Malec, E.: On Witten's positive energy proof for weakly asymptotically flat space-times. Class. Quantum Grav.3, L123-L128 (1986)Google Scholar
  7. [Ch1]
    Chruściel, P. T.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological properties and global structure of space-time. Bergmann P. G., Sabbata, V.de (eds.), pp. 49–59. New York: Plenum Press 1986Google Scholar
  8. [Ch2]
    Chruściel, P. T.: A remark on the positive energy theorem. Class. Quantum Grav.3, L115-L121 (1986)Google Scholar
  9. [ChK]
    Chruściel, P. T., Kondracki, W.: Some global charges in classical yang-mills theory. Phys. Rev.D36, 1874–1881 (1987)Google Scholar
  10. [COM]
    Christodoulou, D. O'Murchadha, N.: The boost problem in general relativity. Commun. Math. Phys.80, 271–300 (1981)Google Scholar
  11. [Ei]
    Einstein, A.: Die Grundlage der allgemeinen Relativitaets-Theorie. Ann. Phys.49, 769–822 (1916)Google Scholar
  12. [vF]
    Freud, Ph.v: Ueber die Ausdruecke der Gesamtenergie und des Gesamtimpulses eines materiellen Systems in der allgemeinen Relativitaets-Theorie. Ann. Math.40, 417–419 (1939)Google Scholar
  13. [Ge]
    Geroch, R.: Structure of the Gravitational Field at Spatial Infinity. J. Math. Phys.13, 956–968 (1972)Google Scholar
  14. [OM]
    O'Murchadha, N.: Total energy-momentum in general relativity. J. Math. Phys.27, 2111–2128 (1986)Google Scholar
  15. [Sol]
    Solovyev, V. O.: Generator algebra of the asymptotic Poincaré group in the general theory of relativity. Theor. Math. Phys.65, 400–414 (1985)Google Scholar
  16. [Som]
    Sommers, P.: The geometry of the gravitational field at spatial infinity. J. Math. Phys.19, 549–554 (1978)Google Scholar
  17. [Tr]
    Trautman, A.: Conservation laws in general relativity, the same book as [ADM]Google Scholar
  18. [We]
    Weinberg, S.: Gravitation and cosmology. New York: J. Wiley 1972Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Piotr T. Chruściel
    • 1
  1. 1.Physics DepartmentYale UniversityNew HavenUSA

Personalised recommendations