Advertisement

Communications in Mathematical Physics

, Volume 125, Issue 1, pp 91–112 | Cite as

Anderson localization for the 1-D discrete Schrödinger operator with two-frequency potential

  • V. A. Chulaevsky
  • Ya. G. Sinai
Article

Abstract

We prove the complete exponential localization of eigenfunctions for the 1-D discrete Schrödinger operators with quasi-periodic potentials having two basic frequencies. It is shown also that for such operators there is no forbidden zones in the spectrum, unlike the operators with one basic frequency.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mott, N., Twose, W.D.: Adv. Phys.10, 107 (1961)Google Scholar
  2. 2.
    Borland, R.E.: The nature of the electronic states in disordered one-dimensional systems. Proc. R. Soc. London A274, 529 (1963)Google Scholar
  3. 3.
    Goldsheid, I.Ya., Molchanov, S.A., Pastur, L.A.: A pure point spectrum of the stochastic one-dimensional Schrödinger equation. Funkt. Anal. Appl.11, 1 (1977)Google Scholar
  4. 4.
    Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math. Phys.78, 201 (1980)Google Scholar
  5. 5.
    Carmona, R.: Exponential localization in one dimensional disordered systems. Duke Math. J.49, 191 (1982)Google Scholar
  6. 6.
    Simon, B., Taylor, M., Wolf, T.: Some rigorous results for the Anderson model. Phys. Rev. Lett.54, 1589 (1985)Google Scholar
  7. 7.
    Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys.88, 151 (1983)Google Scholar
  8. 8.
    Fröhlich, J., Spencer, T.: A rigorous approach to Anderson localization. Phys. Rep.103, 9 (1984)Google Scholar
  9. 9.
    Fröhlich, J., Spencer, T.: Mathematical theory of Anderson localization, Proc. IAMP Conf. Boulder. Physica124A, 303 (1984)Google Scholar
  10. 10.
    Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys.101, 21 (1985)Google Scholar
  11. 11.
    Aubry, S., André, G.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isreal Phys. Soc.3, 133 (1980)Google Scholar
  12. 12.
    Avron, J., Simon, B.: Almost periodic Schrödinger operators. II. The density of states. Duke Math. J.50, 369 (1983)Google Scholar
  13. 13.
    Figotin, A.L., Pastur, L.A.: The positivity of Lyapunov exponent and the absence of absolutely continuous spectrum for the Almost-Mathieu equation, J. Math. Phys.25, 774 (1984)Google Scholar
  14. 14.
    Bellissard, J., Lima, R., Scoppola, E.: Localization inv-dimensional incommensurate structures. Commun. Math. Phys.88, 207 (1983)Google Scholar
  15. 15.
    Sinai, Ya. G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Stat. Phys.46, 861 (1987)Google Scholar
  16. 16.
    Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasiperiodic Schrödinger operators. Preprint, 1987Google Scholar
  17. 17.
    Herman, M.: Une methode pour minorer des exposants de Lyapunov. Preprint, Palaiseau, 1982Google Scholar
  18. 18.
    Pastur, L.A.: Lower bounds of the Lyapunov exponent for some finite-difference equations with quasi-periodic coefficients. In: Operators in functional spaces and problemes of the theory of functions, Kiev: Naukova Dumka 1987 (Russian)Google Scholar
  19. 19.
    Johnson, R.A.: Private communicationGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • V. A. Chulaevsky
    • 1
  • Ya. G. Sinai
    • 2
  1. 1.Research Computing CentreAcademy of Sciences of the USSRPushchino, Moscow RegionUSSR
  2. 2.Landau Institute of Theoretical PhysicsAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations