Communications in Mathematical Physics

, Volume 111, Issue 2, pp 281–327

Multicomponent composites, electrical networks and new types of continued fraction I

  • G. W. Milton


The development of bounds on the complex effective conductivity tensor σ* (that relates the average current to the average electric field in a multicomponent composite) has been hindered by lack of a suitable continued-fraction representation for σ*. Here a new field equation recursion method is developed which gives an expression for σ* as a continued fraction of a novel form incorporating as coefficients the component conductivities and a set of fundamental geometric parameters reflecting the composite geometry. A hierarchy of field equations is set up such that the solutions of the (j+1)th-order equation generate the solutions of thejth-order equation. Consequently the effective tensor Ω(j) associated with thejth-order field equation is expressible as a fractional linear matrix transformation of Ω(j+1). These transformations combine to form the continued fraction expansion for σ*=Ω(0) which is exploited in the following paper, Part II, to obtain bounds: crude bounds on Ω(j), forj≧1, give narrow bounds on σ*. The continued fraction is a generalization to multivariate functions of the continued fraction expansion of single variable Stieltjes functions that proved important in the development of the theory of Páde approximants, asymptotic analysis, and the theory of orthogonal polynomials in the last century. The results extend to other transport problems, including conduction in polycrystalline media, the viscoelasticity of composites, and the response of multicomponent, multiterminal linear electrical networks.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wall, H.S.: Analytic theory of continued fractions. New York: Van Nostrand 1948Google Scholar
  2. 2.
    Jones, W.B., Thron, W.J.: Encyclopedia of mathematics and its applications, Vol. 11. Rota, G.-C. (ed.). London: Addison-Wesley 1980Google Scholar
  3. 3.
    Baker, G.A., Jr., Graves-Morris, P.R.: Encyclopedia of mathematics and its applications, Vols. 13 and 14. Rota, G.-C. (ed.). London: Addison-Wesley 1981Google Scholar
  4. 4.
    Batchelor, G.K.: Transport properties of two-phase materials with random structure. Ann. Rev. Fluid. Mech.6, 227 (1974)Google Scholar
  5. 5.
    Dell'Antonio, G.F., Figari, R., Orlandi, E.: An approach through orthogonal projections to the study of inhomogeneous or random media with linear response. Ann. Inst. Henri Poincaré44, 1 (1986)Google Scholar
  6. 6.
    Doyle, W.T.: The Clausius-Mossotti problem for eubic arrays of spheres. J. Appl. Phys.49, 795 (1978)Google Scholar
  7. 7.
    McKenzie, D.R., McPhedran, R.C., Derrick, G.H.: The conductivity of lattices of spheres. II. The body centered and face centered cubic lattices. Proc. R. Soc. Lond. A362, 211 (1978)Google Scholar
  8. 8.
    Perrins, W.T., McKenzie, D.R., McPhedran, R.C.: Transport properties of regular arrays of cylinders. Proc. R. Soc. Lond. A369, 207 (1979)Google Scholar
  9. 9.
    Sangani, A.S., Acrivos, A.: On the effective thermal conductivity and permeability of regular arrays of spheres. In: Macroscopic properties of disordered media, p. 216. Burridge, R., Childress, S., Papanicolaou, G. (eds.). Berlin, Heidelberg, New York: Springer 1982Google Scholar
  10. 10.
    Bessis, D., Villani, M.: Perturbative-variational approximations to the spectral properties of semibounded Hilbert space operators, based on the moment problem with finite or diverging moments. Application to quantum mechanical systems. J. Math. Phys.16, 462 (1975)Google Scholar
  11. 11.
    Bergman, D.J.: The dielectric constant of a composite material — a problem in classical physics. Phys. Rep. C43, 377 (1978)Google Scholar
  12. 12.
    Milton, G.W., Golden, K.: Thermal conduction in composites. In: Thermal conductivity 18, Ashworth, T., Smith, D.R. (eds.). New York: Plenum Press 1985Google Scholar
  13. 13.
    Milton, G.W.: Modelling the properties of composites by laminates. In: Homogenization and effective moduli of materials and media, p. 150. Ericksen, J.L., Kinderlehrer, D., Kohn, R., Lions, J.-L. (eds.). Berlin, Heidelberg, New York: Springer 1986Google Scholar
  14. 14.
    Golden, K.: Bounds on the complex permittivity of a multicomponent material. J. Mech. Phys. Solids (to appear)Google Scholar
  15. 15.
    Bergman, D.J.: Rigorous bounds for the complex dielectric constant of a two-component composite. Ann. Phys.138, 78 (1982)Google Scholar
  16. 16.
    Golden, K., Papanicolaou, G.: Bounds for effective parameters of multicomponent media by analytic continuation. J. Stat. Phys.40, 655 (1985)Google Scholar
  17. 17.
    Wiener, O.: Abhandlungen der Mathematisch-Physischen Klasse der Königlichen Sächsischen Gesellschaft der Wissenschaften32, 509 (1912)Google Scholar
  18. 18.
    Beran, M.J.: Use of the variational approach to determine bounds for the effective permittivity in random media. Nuovo Cimento38, 771 (1965)Google Scholar
  19. 19.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys.33, 3125 (1962)Google Scholar
  20. 20.
    Kröner, E.: Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids25, 137 (1977)Google Scholar
  21. 21.
    Willis, J.R.: Elasticity theory of composites. In: Mechanics of solids, p. 653. Hopkins, H.G., Sewell, M.J. (eds.). Oxford, New York: Pergamon Press 1982Google Scholar
  22. 22.
    Phan-Thien, N., Milton, G.W.: New bounds on the effective thermal conductivity ofN-phase materials. Proc. R. Soc. London A380, 333 (1982)Google Scholar
  23. 23.
    Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. (Leipzig)24, 636 (1935)Google Scholar
  24. 24.
    Kohler, W., Papanicolaou, G.C.: Bounds for effective conductivity of random media. In: Macroscopic properties of disordered media, p. 111. Burridge, R., Childress, S., Papanicolaou, G. (eds.). Berlin, Heidelberg, New York: Springer 1982Google Scholar
  25. 25.
    Kantor, Y., Bergman, D.J.: Improved rigorous bounds on the effective elastic moduli of a composite material. J. Mech. Phys. Solids32, 41 (1984)Google Scholar
  26. 26.
    Papanicolaou, G.C., Varadan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Colloquia mathematica societatis jános boyai27, random fields, Esztergom (Hungary) 1982, p. 835. Amsterdam: North-HollandGoogle Scholar
  27. 27.
    Golden, K., Papanicolaou, G.: Bounds for effective parameters of heterogeneous media by analytic continuation. Commun. Math. Phys.90, 473 (1983)Google Scholar
  28. 28.
    Gilbarg, N., Trudinger, N.S.: Elliptic partial differential equations of second order, p. 78. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  29. 29.
    Brown, W.F.: Solid mixture permittivities. J. Chem. Phys.23, 1514 (1955)Google Scholar
  30. 30.
    Torquato, S.: Effective electrical conductivity of two-phase disordered composite media. J. Appl. Phys.58, 3790 (1985)Google Scholar
  31. 31.
    Beran, M.J.: Statistical continuum theories, pp. 181–256. New York: Interscience 1968Google Scholar
  32. 32.
    Corson, P.B.: Correlation functions for predicting properties of heterogeneous materials. I. Experimental measurement of spatial correlation functions in multiphase solids. J. Appl. Phys.45, 3159 (1974)Google Scholar
  33. 33.
    Torquato, S., Stell, G.: Microstructure of two-phase random media. I. Then-point probability functions. J. Chem. Phys.77, 2071 (1982)Google Scholar
  34. 34.
    Gillette, G.J.: Effective property bounds for two-phase random suspensions using statistics of inclusion geometry. Thesis, Catholic University of America, Washington, D.C., 1984Google Scholar
  35. 35.
    Berryman, J.G.: Measurement of spatial correlation functions using image processing techniques. J. Appl. Phys.57, 2374 (1985)Google Scholar
  36. 36.
    Haile, J.M., Massobrio, C., Torquato, S.: Two-point matrix probability function for two-phase random media: Computer simulations results for impenetrable spheres. J. Chem. Phys.83, 4075 (1985)Google Scholar
  37. 37.
    Milton, G.W., Kohn, R.V.: Bounds for anisotropic composites by variational principles (in preparation)Google Scholar
  38. 38.
    Keller, J.B.: A theorem on the conductivity of a composite medium. J. Math. Phys.5, 548 (1964)Google Scholar
  39. 39.
    Dykhne, A.M.: Conductivity of a two-dimensional, two-phase system. Zh. Eksp. Teor. Fiz.59, 110 (1970) [Soviet Phys. JETP32, 63 (1971)]Google Scholar
  40. 40.
    Mendelson, K.S.: Effective conductivity of two-phase material with cylindrical phase boundaries. J. Appl. Phys.46, 917 (1975)Google Scholar
  41. 41.
    Golden, K.: Bounds for effective parameters of multicomponent media by analytic continuation. Ph.D. thesis: New York University 1984Google Scholar
  42. 42.
    Synge, J.L.: The hypercircle in mathematical physics. London: Cambridge University Press 1957Google Scholar
  43. 43.
    Milton, G.W.: Bounds on the electromagnetic, elastic, and other properties of two-component composites. Phys. Rev. Lett.46, 542 (1981)Google Scholar
  44. 44.
    Miller, M.N.: Bounds for effective electrical, thermal, and magnetic properties of heterogeneous materials. J. Math. Phys.10, 1988 (1969)Google Scholar
  45. 45.
    McPhedran, R.C., Milton, G.W.: Bounds and exact theories for the transport properties of inhomogeneous media. Appl. Phys. A26, 207 (1981)Google Scholar
  46. 46.
    Torquato, S., Stell, G.: Bounds on the effective thermal conductivity of a dispersion of fully penetrable spheres. Lett. Appl. Engng. Sci.23, 375 (1985)Google Scholar
  47. 47.
    Torquato, S., Beasley, J.D.: Effective properties of fibre-reinforced materials. I. Bounds on the effective thermal conductivity of dispersions of fully penetrable cylinders. Int. J. Engng. Sci.24, 415 (1986)Google Scholar
  48. 48.
    Berryman, J.G.: Variational bounds on elastic constants for the penetrable sphere model. J. Phys. D18, 585 (1985)Google Scholar
  49. 49.
    Felderhof, B.U.: Bounds for the complex dielectric constant of a two-phase composite. Physica126 A, 430 (1984)Google Scholar
  50. 50.
    Torquato, S., Lado, F.: Effective properties of two-phase disordered composite media. II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres. Phys. Rev. B33, 6428 (1986)Google Scholar
  51. 51.
    Torquato, S., Stell, G.: Microscopic approach to transport in two-phase random media. CEAS Report No. 352, 1980Google Scholar
  52. 52.
    Berryman, J.: Effective medium theory for elastic composites. In: Elastic wave scattering and propagation, p. 111. Varadan, V.K., Varadan, V.V. (eds.). Ann Arbor, MI: Ann Arbor Science 1982Google Scholar
  53. 53.
    Milton, G.W.: The coherent potential approximation is a realizable effective medium scheme. Commun. Math. Phys.99, 463 (1985)Google Scholar
  54. 54.
    Sen, P.N., Scala, C., Cohen, M.H.: A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics14, 541 (1976)Google Scholar
  55. 55.
    Landauer, R.: Electrical conductivity in inhomogeneous media. In: Electrical transport and optical properties of inhomogeneous media, p. 2. Garland, J.C., Tanner, D.B. (eds.). New York: Am. Inst. Phys. 1978Google Scholar
  56. 56.
    Watt, J.P., Davies, G.F., O'Connell, R.J.: The elastic properties of composite materials. Rev. Geophys. Space Phys.14, 541 (1976)Google Scholar
  57. 57.
    Korringa, J., Brown, R.J.S., Thompson, D.D., Runge, R.J.: Self-consistent imbedding and the ellipsoidal model for porous rocks. J. Geophys. Res.84, 5591 (1979)Google Scholar
  58. 58.
    Berryman, J.G.: Long-wavelength propagation in composite elastic media. I. Spherical inclusions. J. Acoust. Soc. Am.68, 1809 (1980)Google Scholar
  59. 59.
    Niklasson, G.A., Granqvist, C.G.: Optical properties and solar selectivity of coevaporated Co-Al2O3 films. J. Appl. Phys.55, 3382 (1984)Google Scholar
  60. 60.
    Stroud, D.: Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B12, 3368 (1975)Google Scholar
  61. 61.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of continuous media. Oxford, New York: Pergamon Press 1960Google Scholar
  62. 62.
    Weidmann, J.: Linear operators in Hilbert spaces, p. 235. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  63. 63.
    Love, A.E.H.: A treatise on the mathematical theory of elasticity. New York: Dover 1944Google Scholar
  64. 64.
    Storer, J.E.: Passive network synthesis. New York: McGraw-Hill 1957Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • G. W. Milton
    • 1
  1. 1.California Institute of Technology, 405-47PasadenaUSA
  2. 2.Courant InstituteNew York UniversityNew YorkUSA

Personalised recommendations