Integral Equations and Operator Theory

, Volume 44, Issue 2, pp 212–242 | Cite as

Capacities in metric spaces

  • Vladimir Gol'dshtein
  • Marc Troyanov


We discuss the potential theory related to the variational capacity and the Sobolev capacity on metric measure spaces. We prove our results in the axiomatic framework of [17].


Measure Space Potential Theory Variational Capacity Axiomatic Framework Sobolev Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.R. Adams, L.I. HedbergFunction Spaces and Potential theory. Grundlehren der Mathematischen Wissenschaften314, Springer-Verlag, 1996.Google Scholar
  2. [2]
    L. CapognaRegularity of quasi-linear equations in the Heisenberg group. Comm. Pure Appl. Math. 50 (1997),9, 867–889Google Scholar
  3. [3]
    L. CapognaRegularity for quasilinear equations and 1-nformal maps in Carnot groups. Math. Ann.313 (1999), no. 2, 263–295.Google Scholar
  4. [4]
    J. CheegerDifferentiability of Lipschitz Functions on Metric Measure Spaces. GAFA9 (195) 428–517.Google Scholar
  5. [5]
    V. M. Chernikov and S. K. Vodop'yanovSobolev Spaces and hypoelliptic Equations I. Siberian Adv. Math.6 No 3 (1996) 27–67.Google Scholar
  6. [6]
    V. M. Chernikov and S. K. Vodop'yanovSobolev Spaces and hypoelliptic Equations I. Siberian Adv. Math.6 No 4 (1996) 64–96.Google Scholar
  7. [7]
    G. ChoquetTheory of Capacities. Ann. Inst. Fourier5 (1953–54) 131–295.Google Scholar
  8. [8]
    G. Choquet,Forme abstraite du théorème de capacitabilité. Ann. Inst. Fourier9 (1959) 83–90.Google Scholar
  9. [9]
    G. ChoquetLectures on Analysis, Volume 1 W. A. Benjamin, Inc. (1969).Google Scholar
  10. [10]
    J.A. ClarksonUniformly Convex Spaces. Transaction Amer. Math. Soc.40 (1936) 396–414Google Scholar
  11. [11]
    L.C. Evans and R.F. GariepyMeasure Theory and Fine properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, Florida, USA (1992).Google Scholar
  12. [12]
    B. Franchi, P. Hajłasz and P. KoskelaDefinitions of Sobolev classes on metric spaces. Ann. Inst. Fourier49 (1999) 1903–1924.Google Scholar
  13. [13]
    K. GafaïtiThèse. EPF-Lausanne (2001).Google Scholar
  14. [14]
    Rings and quasiconformal mappings in space. Trans. Am. Math. Soc. 103, 353–393 (1962).Google Scholar
  15. [15]
    V. M. Gol'dshtein and Yu.G. Reshetnyak,Quasiconformal Mappings and Sobolev Spaces., Mathematics and its Application Kluwer 1990.Google Scholar
  16. [16]
    V.M. Gol'dshtein and M. Troyanov,An integral characterization of Hajłasz-Sobolev space. Comptes Rendus de l'Académie des Sciences (to appear).Google Scholar
  17. [17]
    V. M. Gol'dshtein and M. Troyanov,Axiomatic Theory of Sobolev Spaces. To appear in Expositiones Mathematicae.Google Scholar
  18. [18]
    P. Hajłasz,Sobolev spaces on an arbitrary metric space. Potential Anal.5 (1996), no. 4, 403–415.Google Scholar
  19. [19]
    P. Hajłasz and J. KinnunenHölder quasicontinuity of Sobolev functions on metric spaces. Rev. Mat. Iberoamericana 14 (1998), no.3, 601–622.Google Scholar
  20. [20]
    P. Hajłasz and P. KoskelaSobolev Met Poincaré. Memoirs Amer. Math. Soc., no.688, 2000.Google Scholar
  21. [21]
    J. Heinonen,Lectures on analysis on metric spaces. Universitext Springer-Verlag, New York, 2001.Google Scholar
  22. [22]
    J. Heinonen, T. Kilpeläinen, and O. MartioNon Linear Potential Theory of Degenerate Elliptic Equations. Oxford Math. Monographs (1993).Google Scholar
  23. [23]
    J. Heinonen and P. KoskelaQuasiconformal maps in metric spaces with controlled geometry. Acta Math.181 (1998), no. 1, 1–61.Google Scholar
  24. [24]
    E. Hewitt and K. StrombergReal and Abstract Analysis. Springer-Verlag (1969).Google Scholar
  25. [25]
    F. Hirzebruch and W. ScharlauEinfürung in die Funktionalanalysis Hochschultaschenbücher (1971).Google Scholar
  26. [20]
    T. KilpeläinenPotential theory for supersolutions of degenerate elliptic equations. Indiana Univ. Math. J.38 (1989), no. 2, 253–275.Google Scholar
  27. [27]
    T. KilpeläinenWeighted Sobolev Spaces and Capacity. Annales Academiae Scientiarum Fennicae Series Mathematica19 (1994) 95–113.Google Scholar
  28. [28]
    T. KilpeläinenSmooth approximation in weighted Sobolev spaces. Comment. Math. Univ. Carolinae38 (1997) 29–35.Google Scholar
  29. [29]
    J. Kinnunen and O. MartioThe Sobolev Capacity on Metric Spaces. Annales Academiae Scientiarum Fennicae Series Mathematica21 (1996) 367–382.Google Scholar
  30. [30]
    J. Kinnunen and O. MartioChoquet Property for the Sobolev Capacity in Metric Spaces. Preprint.Google Scholar
  31. [31]
    J. Kinnunen and N. Shanmugalingam,Quasi-minimizers on Metric Spaces. Preprint.Google Scholar
  32. [32]
    P. Koskela, J. Manfredi and E. VillamorRegularity theory and trace of A-harmonic functions. Trans. Amer. Math. Soc348 (1996) 755–766.Google Scholar
  33. [33]
    O.A. Ladyzhenskaya and N.N. Ural'tsevaLinear and quasilinear elliptic equation. Academic Press, 1968.Google Scholar
  34. [34]
    J. LewisRegularity of the Derivatives of Solutions to Certain Degenerate Elliptic Equations. Indiana University Math. J.32 (1983) pp. 849–859.Google Scholar
  35. [35]
    J. Maly and W. ZiemerFine Regularity of Solutions of Elliptic Partial Differential Equations. A.M.S. Math. Surveys and Monographs, vol. 51.Google Scholar
  36. [36]
    V. G. Maz'yaOn-conductivity and theorems on imbedding certain functional spaces into a C-space. (Russian) Dokl. Akad. Nauk SSSR 140 (1961) 299–302.Google Scholar
  37. [37]
    V.G. Maz'yaSobolev Spaces. Springer Verlag (1985).Google Scholar
  38. [38]
    V.G. Maz'ya and V.P. Khavin,Nonlinear Potential Theory. Russian Math. Survey27 (1972) 71–148.Google Scholar
  39. [39]
    G.D. MostowQuasi-Conformal Mappings in n-Space and the Rigidity of Space Forms. Publ. IHES34 (1968).Google Scholar
  40. [40]
    Yu. G. Reshetnyak,On the concept of Capacity in the Theory of Function with Generalized Derivatives. Sib. Math. Journal210 (1969) 1109–1138.Google Scholar
  41. [41]
    N. Shanmugalingam,Newtonian Spaces: An Extension of Sobolev Spaces to Metric Measure Spaces. Preprint (1999).Google Scholar
  42. [42]
    P. TolksdorfRegularity for a more general class of quasilinear elliptic equations. J. diff. Equations51 (1984) 126–150.Google Scholar
  43. [43]
    M. TroyanovParabolicity of Manifolds. Siberian Adv. Math.9 (1999) 125–150.Google Scholar
  44. [44]
    M. TroyanovSolving the p-Laplacian on Manifolds. Proc. Amer. Math. Soc.128 (2000) no. 2, 541–545.Google Scholar
  45. [45]
    M. TroyanovApproximately Lipschitz Mappings and Sobolev Mappings between Metric Spaces. in Proceedings on Analysis and Geometry Sobolev Institute Press, Novosibirsk, (2000) 585–594.Google Scholar
  46. [46]
    W.P. ZiemerWeakly Differentiable Functions. Graduate Text in Mathematics 120, Springer-Verlag 1989.Google Scholar

Copyright information

© Birkhäuser Verlag 2002

Authors and Affiliations

  • Vladimir Gol'dshtein
    • 2
  • Marc Troyanov
    • 1
  1. 1.Départment de MathématiquesEPFLLausanneSwitzerland
  2. 2.Departement of MathematicsBen Gurion University of The NegevBeer ShevaIsrael

Personalised recommendations