Advertisement

Journal of Neurocytology

, Volume 19, Issue 2, pp 200–212 | Cite as

Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins

  • G. W. Huntley
  • E. G. Jones
Article

Summary

Immunoreactivity for two calcium binding proteins, 28 kDa calbindin and parvalbumin, was used to label cells morphologically identical to Cajal-Retzius neurons in the developing visual, prefrontal, sensory-motor and temporal cortex of Old World monkeys. At all fetal ages examined (E110–E155), Cajal-Retzius neurons throughout the cortex were immunoreactive for calbindin as well as being acetylcholinesterase positive. Between E130 and E150, the calbindin-immunoreactive Cajal-Retzius cells in the visual cortex, and a few in other cortical areas, also showed parvalbumin immunoreactivity. A reduced population of immunoreactive Cajal-Retzius cells was detected at birth, and none could be visualized by immunocytochemistry or histochemistry at later postnatal ages. Calbindin and parvalbumin immunoreactivity represents a potentially useful marker for this developmentally regulated population of neurons, and the varied expression of the two proteins suggests that Cajal-Retzius neurons may represent a neurochemically heterogeneous cell population.

Keywords

Calcium Cell Population Visual Cortex Cortical Area Acetylcholinesterase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baimbridge, K. G. &Miller, J. J. (1984) Hippocampal calcium-binding protein during commissural kindlinginduced epileptogenesis: progressive decline and effects of anticonvulsants.Brain Research 324, 85–90.PubMedGoogle Scholar
  2. Bradford, R., Parnavelas, J. G. &Lieberman, A. R. (1977) Neurons in layer I of the developing occipital cortex of the rat.Journal of Comparative Neurology 176, 121–32.PubMedGoogle Scholar
  3. Cajal, S. Ramón Y. (1890a) Textura de las circunvoluciones cerebrales de los mamíferos inferiores. Nota preventiva.Gaceta Médica Catalana 1, 22–31.Google Scholar
  4. Cajal, S. Ramón Y. (1890b) Sobre la existencia de células nerviosas especiales en la primera capa de las circunvoluciones Cerebrales.Gaceta Médica Catalana 13, 737–9.Google Scholar
  5. Cajal, S. Ramón Y. (1891) Sur la structure de l'écorce cérébrale de quelques mammifères.La Cellule 7, 125–76.Google Scholar
  6. Cajal, S. Ramón Y. (1892) El nuevo concepto de la histologia de los centras nerviosos.Revista Ciencias Médicas 18, 457–76.Google Scholar
  7. Cajal, S. Ramón Y. (1893) Estructura de la corteza occipital inferior de los pequenos mamiferos.Anales de la Sociedad Espanola de Historia natural 22, 115–25.Google Scholar
  8. Cajal, S. Ramón Y. (1894) The Croonian lecture: La fine structure des centres nerveux.Proceedings of the Royal Society of London 55, 444–67.Google Scholar
  9. Cajal, S. Ramón Y. (1897) Las células de cilindro-eje corto de la capa molecular del cerebro.Revista trimestral Micrográfica Madrid 2, 105–27.Google Scholar
  10. Cajal, S. Ramón Y. (1899a) Estudios sobre la corteza cerebral humana I: corteza visual.Revista trimestral Micrográfica Madrid 4, 1–63.Google Scholar
  11. Cajal, S. Ramón Y. (1899b) Estudios sobre la corteza cerebral humana II: estructura de la corteza motriz del hombre y mamiferos superiores.Revista trimestral Micrográfica Madrid 4, 117–200.Google Scholar
  12. Cajal, S. Ramón Y. (1900a) Estudios sobre la corteza cerebral humana II: corteza motriz (conclusion).Revista trimestral Micrográfica Madrid 5, 1–11.Google Scholar
  13. Cajal, S. Ramón Y. (1900b) Estudios sobre la corteza cerebral humana II: corteza acústica.Revista trimestral Micrográfica Madrid 5, 129–83.Google Scholar
  14. Chalupa, L. M. &Killackey, H. P. (1987) Double-labeled neurons in primary somatosensory cortex (area 3B) of the fetal rhesus monkey.Society for Neuroscience Abstracts 13, 76.Google Scholar
  15. Chun, J. J., Nakamura, M. J. &Shatz, C. J. (1987) Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons.Nature 325, 617–20.PubMedGoogle Scholar
  16. Df-Felipe, J., Hendry, S. H. C. &Jones, E. G. (1989a) Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex.Proceedings of the National Academy of Sciences USA 86, 2093–7.Google Scholar
  17. DeFelipe, J., Hendry, S. H. C. &Jones, E. G. (1989b) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity.Brain Research 503, 49–54.PubMedGoogle Scholar
  18. Defelipe, J. &Jones, E. G. (1988)Cajal on the Cerebral Cortex. New York: Oxford University Press.Google Scholar
  19. Edmunds, S. &Parnavelas, J. G. (1982) Retzius-Cajal cells: ultrastructural study in the developing visual cortex of the rat.Journal of Neurocytology 11, 427–66.PubMedGoogle Scholar
  20. Fairen, A., Cobas, A. &Fonseca, M. (1986) Times of generation of glutamic acid decarboxylase immunoreactive neurons in mouse somatosensory cortex.Journal of Comparative Neurology 251, 67–83.PubMedGoogle Scholar
  21. Filagamo, G. &Marchisio, P. C. (1971) Acetylcholine system and neural development.Neuroscience Research 4, 29–64.Google Scholar
  22. Hendry, S. H. C., Jones, E. G., Killackey, H. P. &Chalupa, L. M. (1987) Choline acetyltransferaseimmunoreactive neurons in fetal monkey cerebral cortex.Developmental Brain Research 37, 313–17.Google Scholar
  23. Hendry, S. H. C., Jones, E. G., Emson, P. C., Lawson, D. E. M., Heizmann, C. W. &Streit, P. (1989) Two classes of cortical GABA neurons defined by different calcium binding protein immunoreactivities.Experimental Brain Research 503, 49–54.Google Scholar
  24. Huntley, G. W., Hendry, S. H. C., Jones, E. G., Chalupa, L. M. &Killackey, H. P. (1987) GABA, neuropeptide and chat expression in neurons of the fetal monkey sensory-motor cortex.Society for Neuroscience Abstracts 13, 76.Google Scholar
  25. Huntley, G. W., Hendry, S. H. C., Killackey, H. P., Chalupa, L. M. &Jones, E. G. (1988a) Temporal sequence of neurotransmitter expression by developing neurons of fetal monkey visual cortex.Developmental Brain Research 43, 69–96.Google Scholar
  26. Huntley, G. W., Hendry, S. H. C., Killackey, H. P., Chalupa, L. M. &Jones, E. G. (1988b) GABA, neuropeptide, and tyrosine hydroxylase immunoreactivity in the frontal cortex of fetal monkeys.Society for Neuroscience Abstracts 14, 1021.Google Scholar
  27. Scjones, E. G. (1975) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey.Journal of Comparative Neurology 160, 205–67.PubMedGoogle Scholar
  28. Jones, E. G. &Hendry, S. H. C. (1989) Different calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei.European Journal of Neuroscience 1, 222–46.PubMedGoogle Scholar
  29. Kölliker, A. Von (1896)Handbuch der Gewebelehre des Menschen, 6th ed, Vol. 2.Nervensystem des Menschen und der Thiere. Leipzig: Engelmann.Google Scholar
  30. König, N., Roch, G. &Marty, R. (1975) The onset of synaptogenesis in rat temporal cortex.Anatomy and Embryology 148, 73–87.PubMedGoogle Scholar
  31. König, N., Valat, J., Fulcrand, J. &Marty, R. (1977) The time of origin of Cajal-Retzius cells in the rat temporal cortex. An autoradiographic study.Neuroscience Letters 4, 21–6.Google Scholar
  32. Kostovic, I. &Goldman-Rakic, P. S. (1983) Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain.Journal of Comparative Neurology 219, 431–47.PubMedGoogle Scholar
  33. Kostovic, I. &Rakic, P. (1984) Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining.Journal of Neuroscience 4, 25–42.PubMedGoogle Scholar
  34. Kostovic, I., Skavic, J. &Strinovic, D. (1988) Acetylcholinesterase in the human frontal associative cortex during the period of cognitive development: early laminar shifts and late innervation of pyramidal neurons.Neuroscience Letters 90, 107–112.PubMedGoogle Scholar
  35. Kristt, D. A. (1983) Acetylcholinesterase in the ventrobasal thalamus: transcience and patterning during ontogenesis.Neuroscience 10, 923–39.PubMedGoogle Scholar
  36. Kristt, D. A. &Waldman, J. V. (1982) Developmental reorganization of acetylcholinesterase-rich inputs to the somatosensory cortex of the mouse.Anatomy and Embryology 164, 331–42.PubMedGoogle Scholar
  37. Krmpotic-Nemanć, J., Kostović, I., Vidić, Z., Nemanic, D. &Kostović-Knezević, L. (1987) Development of Cajal-Retzius cells in the human auditory cortex.Acta Otolaryngologica (Stockholm) 103, 477–80.Google Scholar
  38. Larroche, J.-C. (1981) The marginal layer in the neocortex of a 7-week-old human embryo.Anatomy and Embryology 162, 301–12.PubMedGoogle Scholar
  39. Lund, J. (1973) Organization of neurons in the visual cortex area 17 of the monkey.Journal of Comparative Neurology 147, 455–96.PubMedGoogle Scholar
  40. Luskin, M. B. &Shatz, C. J. (1985) Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones.Journal of Neuroscience 5, 1062–75.PubMedGoogle Scholar
  41. Marin-Padilla, M. (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica): A Golgi study. I. The primordial neocortical organization.Zeitschrift für Anatomie und Entwicklungsgeschichte 134, 117–45.Google Scholar
  42. Marin-Padilla, M. (1972) Prenatal ontogenetic history of the principal neurons of the neocortex of the cat (Felis domestica): A Golgi study. II. Developmental differences and their significance.Zeitschrift für Anatomie und Entwicklungsgeschichte 136, 125–42.Google Scholar
  43. Marin-Padilla, M. (1984) Neurons of layer I: A developmental analysis. InCerebral Cortex, Vol. I, Cellular Components of the Cerebral Cortex (edited byPeters, A. &Jones, E. G.) pp. 447–77. New York: Plenum.Google Scholar
  44. Marin-Padilla, M. &Marin-Padilla, M. T. (1982) Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex: A Golgi study.Anatomy and Embryology 164, 161–206.PubMedGoogle Scholar
  45. Matute, C. &Streit, P. (1986) Monoclonal antibodies demonstrating GABA-like immunoreactivity.Histochemistry 86, 147–57.PubMedGoogle Scholar
  46. McDonald, J. K., Parnavelas, J. G., Karamanlidis, A. W., Brecha, N. &Konig, J. I. (1982) The morphology and distribution of peptide-containing neurons in the adult and developing visual cortex of the rat. I. Somatostatin.Journal of Neurocytology 11, 809–24.PubMedGoogle Scholar
  47. Mehra, R. &Hendrickson, A. (1987) Developmental studies of substance P and neuropeptide Y neurons in monkey visual cortex.Society for Neuroscience Abstracts 13, 358.Google Scholar
  48. Meyer, G. &Wahle, P. (1988) Early postnatal development of cholecystokinin-immunoreactive structures in the visual cortex of the cat.Journal of Comparative Neurology 276, 360–86.PubMedGoogle Scholar
  49. Molliver, M. E. &Van Der Loos, H. (1970) The ontogenesis of cortical circuitry: the spatial distribution of synapses in somesthetic cortex of newborn dog.Ergebnisse der Anatomie und Entwicklungsgeschichte 42, 1–54.Google Scholar
  50. Norman, A. W., Roth, J. &Orci, L. (1982) The vitamin D endocrine system: steroid metabolism, hormone receptors, and biological response (calcium binding proteins).Endocrinology Review 3, 331–66.Google Scholar
  51. Parnavelas, J. G. &Cavanagh, M. E. (1988) Transient expression of neurotransmitters in the developing neocortex.Trends in Neuroscience 11, 92–3.Google Scholar
  52. Prusky, G. T., Arbuckle, J. M. &Cynader, M. S. (1988) Transient concordant distributions of nicotinic receptors and acetylcholinesterase activity in infant rat visual cortex.Developmental Brain Research 39, 154–9.Google Scholar
  53. Raedler, E. &Raedler, A. (1978) Autoradiographic study of early neurogenesis is rat neocortex.Anatomy and Embryology 154, 267–84.PubMedGoogle Scholar
  54. Raedler, A. &Sievers, J. (1975) The development of the visual system of the albino rat.Advances in Anatomy Embryology and Cell Biology 50, Fasc. 3.Google Scholar
  55. Raedler, A. &Sievers, J. (1976) Light and electron microscopical studies on specific cells of the marginal zone in the developing rat cerebral cortex.Anatomy and Embryology 149, 173–81.PubMedGoogle Scholar
  56. Rakic, P. (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition.Science 183, 425–7.PubMedGoogle Scholar
  57. Rakic, P. (1976) Differences in the time of origin and in eventual distribution of neurons in areas 17 and 18 of the visual cortex in rhesus monkey.Experimental Brain Research (Supplement) 1, 244–8.Google Scholar
  58. Retzius, G. (1891) Ueber den Bau der Oberflächenschicht der Grosshirnrinde beim Menschen und bei Säugethieren.Biologisches Untersuchungen, Neue Folge 3, 90–102.Google Scholar
  59. Retzius, G. (1893) Die Cajal'schen Zellen der Grosshirnrinde beim Menschen und bei Säugerthieren.Biologisches Untersuchungen, Neue Folge 5, 1–8.Google Scholar
  60. Rickmann, M., Chronwall, B. M. &Wolfe, J. R. (1977) On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a palliai anlage.Anatomy and Embryology 151, 285–307.PubMedGoogle Scholar
  61. Robertson, R. T. (1987) A morphogenic role for transiently expressed acetylcholinesterase in developing thalamocortical systems?Neuroscience Letters 75, 259–64.PubMedGoogle Scholar
  62. Robertson, R. T., Tijerina, A. A. &Gallivan, M. E. (1985) Transient patterns of acetylcholinesterase activity in visual cortex of the rat: normal development and the effects of neonatal monocular enucleation.Developmental Brain Research 21, 203–14.Google Scholar
  63. Sas, E. &Sanides, F. (1970) A comparative Golgi study of Cajal fetal cells.Zeitschrift für mikroskopische-anatomie Forschchung 82, 385–96.Google Scholar
  64. Schwartz, M. L. &Goldman-Rakic, P. S. (1988) Early development of GABA immunoreactive neurons in cerebral cortex of fetal monkeys.Society for Neuroscience Abstracts 14, 1021.Google Scholar
  65. Shoukimas, G. M. &Hinds, J. W. (1978) The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis.Journal of Comparative Neurology 179, 795–830.Google Scholar
  66. Wasserman, R. H. &Fullmer, C. S. (1982) Vitamin D-induced calcium binding protein. InCalcium and Cell Function (edited byCheung, W. Y.) vol. 2, pp. 175–216. New York: Academic Press.Google Scholar
  67. Wolff, J. R., Bottcher, H., Zetzsche, T., Oertel, W. H. &Chronwall, B. M. (1984) Development of GABAergic neurons in rat visual cortex as identified by glutamate decarboxylase-like immunoreactivity.Neuroscience Letters 47, 207–212.PubMedGoogle Scholar
  68. Wolff, N. J. &Butcher, L. L. (1981) Cholinergic neurons in the caudate-putamen complex proper are intrinsically organized: A combined evans blue and acetylcholinesterase analysis.Brain Research Bulletin 7, 487–507.PubMedGoogle Scholar
  69. Yamashita, A., Hayashi, M., Shimizu, K. &Oshima, K. (1989) Ontogeny of somatostatin in cerebral cortex of macaque monkey: an immunohistochemical study.Developmental Brain Research 45, 103–11.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • G. W. Huntley
    • 1
  • E. G. Jones
    • 1
  1. 1.Department of Anatomy and NeurobiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations