Communications in Mathematical Physics

, Volume 90, Issue 4, pp 511–520 | Cite as

An uncertainty principle for fermions with generalized kinetic energy

  • Ingrid Daubechies
Article

Abstract

We derive semiclassical upper bounds for the number of bound states and the sum of negative eigenvalues of the one-particle Hamiltoniansh=f(−i∇)+V(x) acting onL2(ℝn). These bounds are then used to derive a lower bound on the kinetic energy\(\sum\limits_{j = 1}^N {\left\langle {\psi ,f( - i\nabla _j )\psi } \right\rangle }\) for anN-fermion wavefunction ψ. We discuss two examples in more detail:f(p)=|p| andf(p)=(p2+m2)1/2m, both in three dimensions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. IV: Analysis of operators. New York: Academic Press 1978Google Scholar
  2. 2.
    Lieb, E., Thirring, W.: A bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett.35, 687–689 (1975). More details are given in Lieb, E., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, Lieb, E. H., Simon, B., Wightman, A. S., (eds.). Princeton: Princeton University Press 1976Google Scholar
  3. 3.
    Rosenbljum, G.: The distribution of the discrete spectrum for singular differential operators. Dokl. Akad. Nauk SSSR202 (1972) (Transl. Sov. Math. Dokl.13, 242–249 (1972))Google Scholar
  4. 4.
    Lieb, E.: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Am. Math. Soc.82, 751–753 (1976). More details can be found in Lieb, E.: The number of bound states of one-body Schrödinger operators and the Weyl problem. Proc. Am. Math. Soc.36, 241–252 (1980)Google Scholar
  5. 5.
    Cwikel, M.: Weak type estimates and the number of bound states of Schrödinger operators. Ann. Math.106, 93–102 (1977)Google Scholar
  6. 6.
    Lieb, E.: The stability of matter. Rev. Mod. Phys.48, 553–569 (1976)Google Scholar
  7. 7.
    Daubechies, I., Lieb, E.: One-electron relativistic molecules with Coulomb interaction. Commun. Math. Phys.90, (1983)Google Scholar
  8. 8.
    Bratteli, O., Kishimoto, A., Robinson, D.: Positivity and monotonicity ofC 0-semigroups, I. Commun. Math. Phys.75, 67–84 (1980)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Ingrid Daubechies
    • 1
  1. 1.Physics DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations