Communications in Mathematical Physics

, Volume 90, Issue 4, pp 511–520 | Cite as

An uncertainty principle for fermions with generalized kinetic energy

  • Ingrid Daubechies


We derive semiclassical upper bounds for the number of bound states and the sum of negative eigenvalues of the one-particle Hamiltoniansh=f(−i∇)+V(x) acting onL2(ℝn). These bounds are then used to derive a lower bound on the kinetic energy\(\sum\limits_{j = 1}^N {\left\langle {\psi ,f( - i\nabla _j )\psi } \right\rangle }\) for anN-fermion wavefunction ψ. We discuss two examples in more detail:f(p)=|p| andf(p)=(p2+m2)1/2m, both in three dimensions.


Neural Network Statistical Physic Kinetic Energy Complex System Nonlinear Dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. IV: Analysis of operators. New York: Academic Press 1978Google Scholar
  2. 2.
    Lieb, E., Thirring, W.: A bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett.35, 687–689 (1975). More details are given in Lieb, E., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, Lieb, E. H., Simon, B., Wightman, A. S., (eds.). Princeton: Princeton University Press 1976Google Scholar
  3. 3.
    Rosenbljum, G.: The distribution of the discrete spectrum for singular differential operators. Dokl. Akad. Nauk SSSR202 (1972) (Transl. Sov. Math. Dokl.13, 242–249 (1972))Google Scholar
  4. 4.
    Lieb, E.: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Am. Math. Soc.82, 751–753 (1976). More details can be found in Lieb, E.: The number of bound states of one-body Schrödinger operators and the Weyl problem. Proc. Am. Math. Soc.36, 241–252 (1980)Google Scholar
  5. 5.
    Cwikel, M.: Weak type estimates and the number of bound states of Schrödinger operators. Ann. Math.106, 93–102 (1977)Google Scholar
  6. 6.
    Lieb, E.: The stability of matter. Rev. Mod. Phys.48, 553–569 (1976)Google Scholar
  7. 7.
    Daubechies, I., Lieb, E.: One-electron relativistic molecules with Coulomb interaction. Commun. Math. Phys.90, (1983)Google Scholar
  8. 8.
    Bratteli, O., Kishimoto, A., Robinson, D.: Positivity and monotonicity ofC 0-semigroups, I. Commun. Math. Phys.75, 67–84 (1980)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Ingrid Daubechies
    • 1
  1. 1.Physics DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations