Communications in Mathematical Physics

, Volume 90, Issue 4, pp 497–510 | Cite as

One-electron relativistic molecules with Coulomb interaction

  • Ingrid Daubechies
  • Elliott H. Lieb
Article

Abstract

As an approximation to a relativistic one-electron molecule, we study the operator\(H = ( - \Delta + m^2 )^{1/2} - e^2 \sum\limits_{j = 1}^K {Z_j } |x - R_j |^{ - 1}\) withZj≧0,e−2=137.04.H is bounded below if and only ife2Zj≦2/π allj. Assuming this condition, the system is unstable whene2Zj>2/π in the sense thatE0=inf spec(H)→−∞ as the Rj→0, allj. We prove that the nuclear Coulomb repulsion more than restores stability; namely\(E_0 + 0.069e^2 \sum\limits_{i< j} {Z_i Z_j } |R_i - R_j |^{ - 1} \geqq 0\). We also show thatE0 is an increasing function of the internuclear distances |RiRj|.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dyson, F., Lenard, A.: Stability of matter. I. J. Math. Phys.8, 423–434 (1967)Google Scholar
  2. 1a.
    Lenard, A., Dyson, F.: Stability of matter. II. J. Math. Phys.9, 698–711 (1968)Google Scholar
  3. 2.
    Lieb, E., Thirring, W.: A bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett.35, 687–689 (1975); Errata: Phys. Rev. Lett.35, 1116 (1975). See also Lieb, E.: The stability of matter. Rev. Mod. Phys.48, 553–569 (1976)Google Scholar
  4. 3.
    Dyson, F.: Ground-state energy of a finite system of charged particles. J. Math. Phys.8, 1538–1545 (1967)Google Scholar
  5. 3a.
    Lieb, E.: TheN 5/3 law for bosons. Phys. Lett.A70, 71–73 (1979)Google Scholar
  6. 4.
    Weder, R.: Spectral analysis of pseudodifferential operators. J. Funct. Anal.20, 319–337 (1975)Google Scholar
  7. 5.
    Herbst, I.: Spectral theory of the operator (p 2+m 2)1/2Ze 2/r. Commun. Math. Phys.53, 285–294 (1977); Errata: Commun. Math. Phys.55, 316 (1977)Google Scholar
  8. 6.
    Kato, T.: Perturbation theory for linear operators. Berlin, New York: Springer 1966 (2nd edn. 1976)Google Scholar
  9. 7.
    Lieb, E., Simon, B.: Monotonicity of the electronic contribution to the Born-Oppenheimer energy. J. Phys.B11, L537–542 (1978)Google Scholar
  10. 8.
    Lieb, E.: Monotonicity of the molecular electronic energy in the nuclear coordinates. J. Phys.B15, L63-L66 (1982)Google Scholar
  11. 9.
    Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys. (1983)Google Scholar
  12. 10.
    Lieb, E., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math.23, 22–116 (1977)Google Scholar
  13. 11.
    Kovalenko, V., Perelmuter, M., Semenov, Ya.: Schrödinger operators withL w1/2(ℝl) potentials. J. Math. Phys.22, 1033–1044 (1981)Google Scholar
  14. 12.
    Brascamp, H., Lieb, E., Luttinger, M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal.17, 227–237 (1974)Google Scholar
  15. 13.
    Lieb, E.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities (submitted)Google Scholar
  16. 14.
    Reed, M., Simon, B.: Methods of modern mathematical physics Vol. IV: Analysis of operators. New York: Academic Press 1978Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Ingrid Daubechies
    • 1
  • Elliott H. Lieb
    • 1
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations