Communications in Mathematical Physics

, Volume 90, Issue 4, pp 473–491 | Cite as

Bounds for effective parameters of heterogeneous media by analytic continuation

  • K. Golden
  • G. Papanicolaou
Article

Abstract

We give a mathematical formulation of a method for obtaining bounds on effective parameters developed by D. Bergman and G. W. Milton. This method, in contrast to others used before, does not rely on a variational principle, but exploits the properties of the effective parameter as an analytic function of the component parameters. The method is at present restricted to two-component media.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergman, D. J.: The dielectric constant of a composite material—a problem in classical physics. Phys. Rep.C43, 377–407 (1978)Google Scholar
  2. 2.
    Bergman, D. J.: The dielectric constant of a simple cubic array of identical spheres. J. Phys.C12, 4947–4960 (1979)Google Scholar
  3. 3.
    Bergman, D. J., Stroud, D.: Theory of resonances in electromagnetic scattering by macroscopic bodies. Phys. Rev.B22, 3527 (1980)Google Scholar
  4. 4.
    Bergman, D. J.: Exactly solvable microscopic geometries and rigorous bounds for the complex dieleetric constant of a two-component composite material. Phys. Rev. Lett.44, 1285–1287 (1980)Google Scholar
  5. 5.
    Bergman, D. J.: Bounds for the complex dielectric constant of a two-component composite material. Phys. Rev.B23, 3058–3065 (1981)Google Scholar
  6. 6.
    Bergman, D. J.: Resonances in the bulk properties of composite media—Theory and applications. In: Lecture Notes in Physics Vol.154. Berlin, Heidelberg, New York: Springer 1982, pp. 10–37Google Scholar
  7. 7.
    Milton, G. W.: Bounds on the transport and optical properties of a two-component composite material. J. Appl. Phys.52, 5294–304 (1981)Google Scholar
  8. 8.
    Milton, G. W.: Bounds on the complex permittivity of a two-component composite material. J. Appl. Phys.52, 5286–93 (1981)Google Scholar
  9. 9.
    Milton, G. W.: Bounds on the electromagnetic, elastic and other properties of two-component composites. Phys. Rev. Lett.46, 542–545 (1981)Google Scholar
  10. 10.
    Milton, G. W., McPhedran, R. C.: A comparison of two methods for deriving bounds on the effective conductivity of composites. In: Lecture Notes in Physics Vol.154. Berlin, Heidelberg, New York: Springer 1982, pp. 183–193Google Scholar
  11. 11.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys.33, 3125–3131 (1962)Google Scholar
  12. 12.
    Hashin, Z.: Theory of composite materials, in Mechanics of Composite Materials. Wendt, F. W., Lebowitz, H., Perrone, N. (eds.). New York: Pergamon Press 1970, pp. 201–242Google Scholar
  13. 13.
    Beran, M.: Statistical continuum theories, New York: Wiley 1968Google Scholar
  14. 14.
    Kohler, W., Papanicolaou, G.: Bounds for the effective conductivity of random media. In: Lecture Notes in Physics Vol.154. Berlin, Heidelberg, New York: Springer 1982, pp. 111–130Google Scholar
  15. 15.
    Willis, J. R.: Bounds and selfconsistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids,25, (1977), pp. 185–202Google Scholar
  16. 16.
    Willis, J. R.: Variational and related methods for the overall properties of composites, Advances in Applied Mechanics, Vol.21, New York: Academic Press, 1981Google Scholar
  17. 17.
    Dedericks, P. H., Zeller, R.: Variational treatment of elastic constants of disordered materials. Z. Phys.259, 103–116 (1973)Google Scholar
  18. 18.
    Papanicolaou, G., Varadhan, S.: Boundary value problems with rapidly oscillating random coefficients (Colloquia Mathematica Societatis János Bolyai 27, Radom Fields, Esztergom (Hungary) 1979), Amsterdam: North Holland 1982, pp. 835–873Google Scholar
  19. 19.
    Akhiezer, N. I., Glazman, I. M.: The theory of linear operators in Hilbert space. New York: F. Ungar Publ. Co. 1966Google Scholar
  20. 20.
    Akhiezer, N. I.: The classical moment problem. New York: Hafner 1965Google Scholar
  21. 21.
    Keller, J. B.: A theorem on the conductivity of a composite medium. J. Math. Phys.5, 548–549 (1964)Google Scholar
  22. 22.
    Schulgasser, K.: On a phase interchange relationship for composite materials. J. Math. Phys.17, 378 (1976)Google Scholar
  23. 23.
    Karlin, S., Studden, W. J.: Tchebycheff systems: with applications in analysis and statistics. New York: John Wiley and Sons 1966Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • K. Golden
    • 1
  • G. Papanicolaou
    • 1
  1. 1.Courant InstituteNew York UniversityNew YorkUSA

Personalised recommendations