Mathematische Zeitschrift

, Volume 200, Issue 3, pp 327–346 | Cite as

A characterization of totally reflexive Fréchet spaces

  • M. Valdivia


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellenot, S.F.: Basic sequences in non-Schwartz Fréchet spaces. Trans. Am. Math. Soc.258, 199–216 (1980)Google Scholar
  2. 2.
    Bellenot, S.F., Dubinsky, E.: Fréchet spaces with nuclear Köthe quotients. Trans. Am. Math. Soc.273, 579–594 (1982)Google Scholar
  3. 3.
    Collins, H.S.: Completeness and compactness in linear topological spaces. Trans. Am. Math. Soc.79, 256–280 (1955)Google Scholar
  4. 4.
    Davis, W.J., Figiel, T., Johnson, W.B., Pelczynski, A.: Factoring weakly compact operators. J. Funct. Anal.17, 311–327 (1974)Google Scholar
  5. 5.
    Diestel, J.: Sequences and series in Banach spaces. Berlin-Heidelberg-New York: Springer 1984Google Scholar
  6. 6.
    Dieudonné, J.: Sur les espaces de Montel metrizables. C.R. Acad. Sci. Paris238, 194–195 (1954)Google Scholar
  7. 7.
    Grothendieck, A.: Sur les espaces (F) et (DF). Summa Brasil. Math.3, 3, 57–123 (1954)Google Scholar
  8. 8.
    Horváth, J.: Topological Vector Spaces and Distributions. Vol. I. Reading, Massachusetts, Palo Alto-London: Addison-Wesley Publishing Company 1966Google Scholar
  9. 9.
    Hullsmann, A.: Konstruction von Basisfolgen in Fréchet-Räume. Diplomarbeit. Düsseldorf 1984Google Scholar
  10. 10.
    Johson, W.B., Rosenthal, H.P.: Onw *-basic sequences and their applications to the study of Banach spaces. Studia Math.43, 77–92 (1972)Google Scholar
  11. 11.
    Köthe, G.: Topological vector spaces I. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  12. 12.
    Pelczynski, A.: A note on the paper of I. Singer “Basic sequences and reflexivity of Banach spaces”. Studia Math.21, 371–374 (1962)Google Scholar
  13. 13.
    Pták, V.: Completeness and the open mapping theorem. Bull. Soc. Math. Fr.86, 41–74 (1958)Google Scholar
  14. 14.
    Pták, V.: On complete topological linear spaces. Čehosl. Math. Z.3 (78) 301–364 (1953) [Russian]Google Scholar
  15. 15.
    Robertson, W.: Completions of topological vector spaces. Proc. Lond. Math. Soc. III. Ser.8, 242–257 (1958)Google Scholar
  16. 16.
    Singer, I.: Basic sequences and reflexivity of Banach spaces. Studia Math.21, 351–369 (1962)Google Scholar
  17. 17.
    Singer, II.: Bases in Banach spaces I. Berlin-Heidelberg-New York: Springer 1970Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. Valdivia
    • 1
  1. 1.Facultad de MatemáticasBurjasot (Valencia)Spain

Personalised recommendations