Mathematische Zeitschrift

, Volume 73, Issue 5, pp 393–408 | Cite as

Ringtheoretische Behandlung einfach transitiver Permutationsgruppen

  • Olaf Tamaschke
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Artin, E., Nesbitt, C. J. andR. M. Thrall: Rings witnminimum condition (5th Printing 1955).Google Scholar
  2. [2]
    Brauer, R.: On Cartan-Invariants of groups of finite order. Ann. of Math. II. s.42, 53–61 (1941).Google Scholar
  3. [3]
    Brauer, R., andC. Nesbitt: On the modular characters of groups. Ann. of Math., II. s.42, 556–590 (1941).Google Scholar
  4. [4]
    Brauer, R.: On the connection between the ordinary and the modular characters of groups of finite order. Ann. of Math., II. s.42, 926–935 (1941).Google Scholar
  5. [5]
    Brauer, R.: Investigation on group characters. Ann. of Math., II. ser.42, 936–958 (1941).Google Scholar
  6. [6]
    Brauer, R.: On groups whose order contains a prime number to the first power. I. Amer. J. Math.64, 401–420 (1942).Google Scholar
  7. [7]
    Brauer, R.: On groups whose order contains a prime number to the first power. II. Amer. J. Math.64, 421–440 (1942).Google Scholar
  8. [8]
    Brauer, R.: On Permutationgroups of prime degree and related classes of groups. Ann. of Math., II. s.44, 57–79 (1943).Google Scholar
  9. [9]
    Brauer, R.: Zur Darstellungstheorie der Gruppen endlicher Ordnung. Math. Z.63, 406–444 (1956).Google Scholar
  10. [10]
    Burnside, W.: On some properties of groups of odd order. Proc. London Math. Soc.33, 162–185 (1901).Google Scholar
  11. [11]
    Burnside, W.: Theory of groups of finite order, 2. Aufl. Cambridge: Cambridge University Press 1911; New York: Dover Publications 1955.Google Scholar
  12. [12]
    Deuring, M.: Algebren. Ergebn. d. Math. 4 (1935).Google Scholar
  13. [13]
    Frame, J. S.: The double cosets of a finite group. Bull. Amer. Math. Soc.47, 458–467 (1941).Google Scholar
  14. [14]
    Frame, J. S.: Double coset matrices and group characters. Bull. Amer. Math. Soc.49, 81–92 (1943).Google Scholar
  15. [15]
    Frame, J. S.: Group decomposition by double coset matrices. Bull. Amer. Math. Soc.54, 740–755 (1948).Google Scholar
  16. [16]
    Frame, J. S.: An irreducible representation extracted from two permutation groups. Ann. of Math., II. s.55, 85–100 (1952).Google Scholar
  17. [17]
    Nakayama, T.: Some studies on regular representations, induced representations and modular representations. Ann. of Math., II. s.39, 361–369 (1938).Google Scholar
  18. [18]
    Nesbitt, C.: On the regular representations of algebras. Ann. of Math., II. s.39, 634–658 (1938).Google Scholar
  19. [19]
    Roquette, P.: Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe. J. reine angew. Math.190, 148–168 (1952).Google Scholar
  20. [20]
    Schur, I.: Zur Theorie der einfach transitiven Pormutationsgruppen. Sitzgsber. preuß. Akad. Wiss., phys.-math. Kl.1933, 598–623.Google Scholar
  21. [21]
    Speiser, A.: Die Theorie der Gruppen von endlicher Ordnung, 2. Aufl. 1927.Google Scholar
  22. [22]
    Wielandt, H.: Zur Theorie der einfach transitiven Permutationsgruppen. Math. Z.40, 582–587 (1935).Google Scholar
  23. [23]
    Wielandt, H.: Zur Theorie der einfach transitiven Permutationsgruppen. II. Math. Z.52, 384–393 (1949).Google Scholar
  24. [24]
    Wielandt, H.: Permutationsgruppen. Vorlesungen an der Universität Tübingen im Wintersemester 1954/55.Google Scholar
  25. [25]
    Van der Waerden: Moderne Algebra I. 3. Aufl. 1950.Google Scholar

Copyright information

© Springer-Verlag 1960

Authors and Affiliations

  • Olaf Tamaschke
    • 1
  1. 1.Mathematisches Institut der UniversitätTübingen

Personalised recommendations