Mathematische Zeitschrift

, Volume 186, Issue 1, pp 57–66 | Cite as

A priori estimates and a Liouville theorem for complex Monge-Ampère equations

  • Dieter Riebesehl
  • Friedmar Schulz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Aubin, T.: Nonlinear analysis on manifolds. Monge-Ampère equations. Berlin-Heidelberg-New York: Springer 1982Google Scholar
  2. 2.
    Bedford, E., Taylor, B.A.: The Dirichlet problem for an equation of complex Monge-Ampère type. In: Partial Differential Equations and Geometry. Proceedings of the Park City Conference (Park City, Utah 1977), edited by C.I. Byrnes, pp. 39–50. Basel-New York: Dekker 1979Google Scholar
  3. 3.
    Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations. To appearGoogle Scholar
  4. 4.
    Calabi, E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Michigan Math. J.5, 105–126 (1958)Google Scholar
  5. 5.
    Cheng, S.-Y., Yau, S.T.: On the regularity of the Monge-Ampère equation det (∂2 u/∂x ix j) Comm. Pure Appl. Math.30, 41–68 (1977)Google Scholar
  6. 6.
    Cheng, S.-Y., Yau, S.-T.: On the existence of a complexe Kähler metric on non-compact complex manifolds and the regularity of Fefferman's equations. Comm. Pure Appl. Math.33, 507–544 (1980)Google Scholar
  7. 7.
    Fefferman, C.: Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. of Math. (2)103, 395–416 (1976)Google Scholar
  8. 8.
    Gaveau, B.: Solutions of Monge-Ampère equations by optimal control methods and applications. In: Partial Differential Equations and Geometry. Proceedings of the Park City Conference (Park City, Utah 1977), edited by C.I. Byrnes, pp. 10–17. Basel-New York: Dekker 1979Google Scholar
  9. 9.
    Gilbarg, D., Trudinger, N.S.: Elliptic partials differential equations of second order. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  10. 10.
    Ivochkina, N.M.: Construction of a priori bounds for convex solutions of the Monge-Ampère equation by integral methods. Ukrainian Math. J.30, 32–38 (1978)Google Scholar
  11. 11.
    Lions, P.-L.: Sur les equations de Monge-Ampère, I. Manuscripta Math.41, 1–43 (1983)Google Scholar
  12. 12.
    Meyers, N.G.: On a class of nonuniformly elliptic quasi-linear equations in the plane. Arch. Rational Mech. Anal.12, 367–391 (1963)Google Scholar
  13. 13.
    Oskolkov, A.P.: Some estimates for nonuniformly elliptic equations and systems. Proc. Steklov Inst. Math.92, 233–267 (1966)Google Scholar
  14. 14.
    Pogorelov, A.V.: The Minkowski multidimensional problem. Washington, D.C.: Winston 1978Google Scholar
  15. 15.
    Schulz, F.: A priori estimates and a Liouville theorem for elliptic Monge-Ampère equations. Math. Ann. (to appear)Google Scholar
  16. 16.
    Schulz, F.: AC 2-estimate for solutions of complex Monge-Ampère equations. J. Reine Angew. Math. (to appear)Google Scholar
  17. 17.
    Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math.31, 339–411 (1978)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Dieter Riebesehl
    • 1
  • Friedmar Schulz
    • 1
  1. 1.Mathematisches Institut der Georg-August-UniversitätGöttingenGermany

Personalised recommendations