Advertisement

Combinatorica

, Volume 14, Issue 2, pp 243–246 | Cite as

Cycles throughk vertices in bipartite tournaments

  • J. Bang-Jensen
  • Y. Manoussakis
Note

Abstract

We give a simple proof that everyk-connected bipartite tournament has a cycle through every set ofk vertices. This was conjectured in [4].

AMS subject classification code (1991)

05 C 20 05 C 38 05 C 40 68 R 10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bang-Jensen, andC. Thomassen: A polynomial algorithm for the 2-path problem for semicomplete digraphs,SIAM J. Disc. Math 5 (1992), 366–376.Google Scholar
  2. [2]
    J. A. Bondy, andU. S. R. Murty: Graph Theory with applications, MacMillan Press (1976).Google Scholar
  3. [3]
    S. Fortune, J. Hopcroft, andJ. Wyllie: The directed subgraph homeomorphism problem,Theoretical Computer Science 10 (1980), 111–121.Google Scholar
  4. [4]
    R. Häggkvist, andY. Manoussakis: Cycles and paths in bipartite tournaments with spanning configurations,Combinatorica 9 (1989), 33–38.Google Scholar
  5. [5]
    L. Lovász, andM. D. Plummer:Matching Theory Annals of Discrete Mathematics29, North-Holland (1986).Google Scholar
  6. [6]
    Y. Manoussakis, andZ. Tuza: Polynomial algorithms for finding cycles and paths in bipartite tournaments,SIAM J. Disc. Math. 3 (1990), 537–543.Google Scholar
  7. [7]
    C. Thomassen: Highly connected non 2-linked digraphs,Combinatorica 11 (1991), 393–395.Google Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • J. Bang-Jensen
    • 1
  • Y. Manoussakis
    • 2
  1. 1.Department of Mathematics and Computer ScienceOdense UniversityDenmark
  2. 2.L.R.I. bat 490Universite de Paris-SudOrsay CedexFrance

Personalised recommendations