Mathematische Zeitschrift

, Volume 145, Issue 3, pp 211–229 | Cite as

Partial spreads in finite projective spaces and partial designs

  • Albrecht Beutelspacher


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baer, R.: Partitionen abelscher Gruppen. Arch. der Math.14, 73–83 (1963)Google Scholar
  2. 2.
    Barlotti, A., Cofman, J.: Finite Sperner Spaces Constructed from Projective and Affine Spaces. Abh. math. Sem. Univ. Hamburg40, 231–241 (1974)Google Scholar
  3. 3.
    Bose, R.C.: Strongly regular graphs, partial geometries, and partially balanced designs. Pacific J. Math.13, 389–419 (1963)Google Scholar
  4. 4.
    Bose, R.C., Burton, R.C.: A characterization of Flat Spaces in a Finite Geometry and the Uniqueness of the Hamming and the MacDonald Codes. J. combinat. Theory1, 96–104 (1966)Google Scholar
  5. 5.
    Bruck, R.H., Bose, R.C.: The Construction of Translation Planes from Projective Spaces. J. Algebra1, 85–102 (1964)Google Scholar
  6. 6.
    Bruen, A.: Partial Spreads and Replaceable Nets. Canadian J. Math.23, 381–391 (1971)Google Scholar
  7. 7.
    Dembowski, P.: Finite Geometries. Berlin-Heidelberg-New York: Springer 1968Google Scholar
  8. 8.
    Mesner, D.M.: Sets of Disjoint Lines inPG(3,q). Canadian J. Math.19, 273–280 (1967)Google Scholar
  9. 9.
    Segre, B.: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. pura appl., IV Ser.64, 1–76 (1964)Google Scholar
  10. 10.
    Thas, J.A.: On 4-gonal Configurations. Geometriae dedicata2, 317–326 (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Albrecht Beutelspacher
    • 1
  1. 1.Mathematisches Institut der UniversitätMainzFederal Republic of Germany

Personalised recommendations