Communications in Mathematical Physics

, Volume 92, Issue 4, pp 455–472 | Cite as

Non-abelian bosonization in two dimensions

  • Edward Witten


A non-abelian generalization of the usual formulas for bosonization of fermions in 1+1 dimensions is presented. Any fermi theory in 1+1 dimensions is equivalent to a local bose theory which manifestly possesses all the symmetries of the fermi theory.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coleman, S.: Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D11, 2088 (1975)Google Scholar
  2. 2.
    Mandelstam, S.: Soliton operators for the quantized sine-Gordon equation. Phys. Rev. D11, 3026 (1975)Google Scholar
  3. 3.
    Baluni, V.: The Bose form of two-dimensional quantum chromodynamics. Phys. Lett.90 B, 407 (1980)Google Scholar
  4. 3. a
    Steinhardt, P.J.: Baryons and baryonium in QCD2. Nucl. Phys. B176, 100 (1980)Google Scholar
  5. 3. b
    Amati, D., Rabinovici, E.: On chiral realizations of confining theories. Phys. Lett.101 B, 407 (1981)Google Scholar
  6. 4.
    Wess, J., Zumino, B.: Consequences of anomalous word identities. Phys. Lett.37 B, 95 (1971)Google Scholar
  7. 5.
    D'Adda, A., Davis, A.C., DiVecchia, P.: Effective actions in non-abelian theories. Phys. Lett.121 B, 335 (1983)Google Scholar
  8. 6.
    Polyakov, A.M., Wiegmann, P.B.: Landau Institute preprint (1983)Google Scholar
  9. 7.
    Alvarez, O.: Berkeley preprint (1983)Google Scholar
  10. 8.
    Witten, E.: Global aspects of current algebra. Nucl. Phys. B (to appear)Google Scholar
  11. 9.
    Novikov, S.P.: Landau Institute preprint (1982)Google Scholar
  12. 10.
    Polyakov, A.M.: Interaction of Goldstone particles in two dimensions. Applications to ferromagnets and massive Yang-Mills fields. Phys. Lett.59 B, 79 (1975)Google Scholar
  13. 10. a
    Belavin, A.A., Polyakov, A.M.: Metastable states of two-dimensional isotropic ferromagnets. JETP Lett.22, 245 (1975)Google Scholar
  14. 11.
    Nappi, C.R.: Some properties of an analog of the chiral model. Phys. Rev. D21, 418 (1980)Google Scholar
  15. 12.
    Goto, T., Imamura, I.: Note on the non-perturbation-approach to quantum field theory. Prog. Theor. Phys.14, 396 (1955)Google Scholar
  16. 12. a
    Schwinger, J.: Field-theory commutators. Phys. Rev. Lett.3, 296 (1959)Google Scholar
  17. 12. b
    Jackiw, R.: In: Lectures on current algebra and its applications, Treiman S.B., et al. (eds.): Princeton, NJ: Princeton University Press 1972Google Scholar
  18. 12. c
    Coleman, S., Gross, D., Jackiw, R.: Fermion avatars of the Sugawara model. Phys. Rev.180, 1359 (1969)Google Scholar
  19. 13.
    Kac, V.G.: J. Funct. Anal. Appl.8, 68 (1974)Google Scholar
  20. 13. a
    Lepowsky, J., Wilson, R.L.: Construction of the affine Lie algebra.A 1(1). Commun. Math. Phys.62, 43 (1978)Google Scholar
  21. 13. b
    Frenkel, I.B.: Spinor representations of affine Lie algebras. Proc. Natl. Acad. Sci. USA77, 6303 (1980); J. Funct. Anal.44, 259 (1981)Google Scholar
  22. 13. c
    Feingold, A.J., Frenkel, I.B.: IAS preprint (1983)Google Scholar
  23. 14.
    Belavin, A.M., Polyakov, A.M., Schwar, A.S., Tyupkin, Yu.S.: Pseudoparticle solutions of the Yang-Mills equations. Phys. Lett.59 B, 85 (1975)Google Scholar
  24. 14. a
    't Hooft, G.: Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett.37, 8 (1976);Google Scholar
  25. 14. b
    Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D14, 3432 (1976)Google Scholar
  26. 14. c
    Callan, C.G., Jr., Dashen, R., Gross, D.J.: The structure of the gauge theory vacuum. Phys. Lett.63 B, 334 (1976)Google Scholar
  27. 14. d
    Jackiw, R., Rebbi, C.: Vacuum periodicity in a Yang-Mills quantum theory. Phys. Rev. Lett.37, 172 (1976)Google Scholar
  28. 15.
    Segal, G.: Unitary representations of some infinite-dimensional groups. Commun. Math. Phys.80, 301 (1981)Google Scholar
  29. 15. a
    Frenkel, I., Kac, V.G.: Basic representations. Invent Math.62, 23 (1980)Google Scholar
  30. 16.
    Kac, V.G., Peterson, D.H.: Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc. Natl. Acad. Sci. USA78, 3308 (1981)Google Scholar
  31. 17.
    Frenkel, I.: Private communicationGoogle Scholar
  32. 18.
    Frishman, Y.: Quark trapping in a model field theory. Mexico City 1973. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  33. 19.
    Deser, S., Jackiw, R., Templeton, S.: Three-dimensional massive gauge theories. Phys. Rev. Lett.48, 975 (1982); Topologically massive gauge theories. Ann. Phys. (NY)140, 372 (1982)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Edward Witten
    • 1
  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrincetonUSA

Personalised recommendations