Advertisement

Communications in Mathematical Physics

, Volume 109, Issue 2, pp 249–301 | Cite as

Renormalization group approach to lattice gauge field theories

I. Generation of effective actions in a small field approximation and a coupling constant renormalization in four dimensions
  • Tadeusz Bałaban
Article

Abstract

We study four-dimensional pure gauge field theories by the renormalization group approach. The analysis is restricted to small field approximation. In this region we construct a sequence of localized effective actions by cluster expansions in one step renormalization transformations. We construct also β-functions and we define a coupling constant renormalization by a recursive system of renormalization group equations.

Keywords

Neural Network Renormalization Group Quantum Computing Effective Action Group Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abers, E., Lee, B.W.: Gauge theories. Phys. Rep.9, 1 (1973)Google Scholar
  2. 2.
    Baaquie, B.: Gauge fixing and mass renormalization in the lattice gauge theory. Phys. Rev. D16, 2612–2627 (1977)Google Scholar
  3. 3.
    Bałaban, T., Gawedzki, K.: A low temperature expansion for the pseudoscalar Yukawa model of the quantum fields in two space-time dimensions. Ann. Inst. H. Poincaré36, 271–400 (1982)Google Scholar
  4. 4.
    Bałaban, T.: Ultraviolet stability for a model of interacting scalar and vector fields. Aarhus Universitet, Matematisk Institut, preprint series 1981/1982, No. 19. An extended version in Harvard preprints HUTMP 82/B 116 and B 117Google Scholar
  5. 5.
    Bałaban, T.: (Higgs)2, 3 quantum fields in a finite volume. I. A lower bound. Commun. Math. Phys.85, 603–636 (1982)Google Scholar
  6. 6.
    Bałaban, T.: (Higgs)2, 3 quantum fields in a finite volume. II. An upper bound. Commun. Math. Phys.86, 555–594 (1982)Google Scholar
  7. 7.
    Bałaban, T.: (Higgs)2, 3 quantum fields in a finite volume. III. Renormalization. Commun. Math. Phys.89, 411–445 (1983)Google Scholar
  8. 8.
    Bałaban, T.: Regularity and decay of lattice Green's functions. Commun. Math. Phys.89, 571–597 (1983)Google Scholar
  9. 9.
    Bałaban, T.: Renormalization group methods in non-abelian gauge theories. Harvard preprint HUTMP 84/B 134, or Recent results in constructing gauge fields. Physica124A, 79–90 (1984)Google Scholar
  10. 10.
    Bałaban, T.: Propagators and renormalization transformations for lattice gauge theories. I. Commun. Math. Phys.95, 17–40 (1984)Google Scholar
  11. 11.
    Bałaban, T.: Propagators and renormalization transformations for lattice gauge theories. II. Commun. Math. Phys.96, 223–250 (1984)Google Scholar
  12. 12.
    Bałaban, T.: Averaging operations for lattice gauge theories. Commun. Math. Phys.98, 17–51 (1985)Google Scholar
  13. 13.
    Bałaban, T.: Propagators for lattice gauge theories in a background field. Commun. Math. Phys.99, 389–434 (1985)Google Scholar
  14. 14.
    Bałaban, T.: Spaces of regular gauge field configurations on a lattice and gauge fixing conditions. Commun. Math. Phys.99, 75–102 (1985)Google Scholar
  15. 15.
    Bałaban, T.: The variational problem and background fields in renormalization group method for lattice gauge theories. Commun. Math. Phys.102, 277–309 (1985)Google Scholar
  16. 16.
    Bałaban, T.: Ultraviolet stability of three-dimensional lattice pure gauge field theories. Commun. Math. Phys.102, 255–275 (1985)Google Scholar
  17. 17.
    Bałaban, T., Imbrie, J., Jaffe, A.: Exact renormalization group for gauge theories In: Progress in gauge theories, pp. 79–104, 1983 Cargèse Lectures. Lehmann, G., t'Hooft, G., Jaffe, A., Mitter, P., Singer, I., Stova, R. (eds.). New York: Plenum Press 1984Google Scholar
  18. 18.
    Bałaban, T., Imbrie, J., Jaffe, A.: Renormalization of the Higgs model: minimizers, propagators and the stability of mean field theory. Commun. Math. Phys.97, 299–329 (1985)Google Scholar
  19. 19.
    Benfatto, G., Cassandro, M., Gallavotti, G., Nicolò, F., Olivieri, E., Presutti, E., Scaciatelli, E.: Some probabilistic techniques in field theory. Commun. Math. Phys.59, 143–166 (1978)Google Scholar
  20. 20.
    Benfatto, G., Cassandro, M., Gallavotti, G., Nicolò, F., Olivieri, E., Presutti, E., Scaciatelli, E.: Ultraviolet stability in Euclidean scalar field theories. Commun. Math. Phys.71, 95–130 (1980)Google Scholar
  21. 21.
    Benfatto, G., Gallavotti, G., Nicolò, F.: Elliptic equations and Gaussian processes. J. Funct. Anal.36, 343–400 (1980)Google Scholar
  22. 22.
    Brydges, D., Fröhlich, J. Seiler, E.: On the construction of quantized gauge fields. I. General results. Ann. Phys.121, 227–284 (1979)Google Scholar
  23. 23.
    Brydges, D., Fröhlich, J., Seiler, E.: Construction of quantized gauge fields. II. Convergence of the lattice approximation. Commun. Math. Phys.71, 159–205 (1980)Google Scholar
  24. 24.
    Brydges, D., Fröhlich, J., Seiler, E.: On the construction of quantized gauge fields. III. The two-dimensional abelian Higgs model without cutoffs. Commun. Math. Phys.79, 353–399 (1981)Google Scholar
  25. 25.
    Brydges, D.: A short course on cluster expansions. Lectures given at the XLIII session of 1984 Les Houches Summer School on: Critical Phenomena, Random Systems, Gauge TheoriesGoogle Scholar
  26. 26.
    Cammarota, C.: Decay of correlations for infinite range interactions in unbounded spin systems. Commun. Math. Phys.85, 517–528 (1982)Google Scholar
  27. 27.
    Dashen, R., Gross, D.: Relationship between lattice and continuum definitions of the gauge theory coupling. Phys. Rev. D23, 2340–2348 (1981)Google Scholar
  28. 28.
    Eckmann, J.-P., Magnen, J., Sénéor, R.: Decay properties and Borel summability for the Schwinger functions in P(φ)2 theories. Commun. Math. Phys.39, 251–271 (1975)Google Scholar
  29. 29.
    Faddeev, L., Popov, V.: Feynman diagrams for the Yang-Mills field. Phys. Lett.25 B, 29–30 (1967)Google Scholar
  30. 30.
    Feldman, J., Osterwalder, K.: The Wightman axioms and the mass gap for weakly coupled (φ4)3 quantum field theories. Ann. Phys.97, 80–135 (1976)Google Scholar
  31. 31.
    Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: The infrared behaviour of φ44 (in preparation)Google Scholar
  32. 32.
    Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Méthodes pour la théorie constructive des champs renormalisable, asymptotiquement libres. Proceedings of RCP 25, Strasbourg, June 1984Google Scholar
  33. 33.
    Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on completely convergent Euclidean Feynman graphs. Commun. Math. Phys.98, 273–288 (1985)Google Scholar
  34. 34.
    Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on renormalized Feynman graphs. Commun. Math. Phys.100, 23–55 (1985)Google Scholar
  35. 35.
    Federbusch, P.: A phase cell approach to Yang-Mills theory. I. Small field modes. II. Stability, modified renormalization group transformations. University of Michigan preprintsGoogle Scholar
  36. 36.
    Gallavotti, G., Martin-Löf, A., Miracle-Solé, S.: Some problems connected with the description of coexisting phases at low temperature in the Ising model. In: Statistical mechanics and mathematical problems, pp. 162–202. Lenard, A. (ed.) Lecture Notes in Physics, Vol. 20. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  37. 37.
    Gallavotti, G.: Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods, preprint Dipartamento di Matematica, Il Universitá degli studi di Roma, 1984Google Scholar
  38. 38.
    Gallavotti, G., Nicolò, F.: Renormalization theory in four-dimensional scalar fields I and II. Commun. Math. Phys.100, 545–590 (1985);101, 247–282 (1985)Google Scholar
  39. 39.
    Gawedzki, K., Kupiainen, A.: Renormalization group study of a critical lattice model. I. Convergence to the line of fixed points. Commun. Math. Phys.82, 407–433 (1981)Google Scholar
  40. 40.
    Gawedzki, K., Kupiainen, A.: Renormalization group for a critical lattice model. Commun. Math. Phys.88, 77–94 (1983)Google Scholar
  41. 41.
    Gawedzki, K., Kupiainen, A.: Rigorous renormalization group and asymptotic freedom. In: Scaling and self-similarity in physics, pp. 227–262, Fröhlich, J. (ed.). Boston: Birkhäuser 1983Google Scholar
  42. 42.
    Gawedzki, K., Kupiainen, A.: Block spin renormalization group for dipole gas and (∇φ)4. Ann. Phys.147, 198–243 (1983)Google Scholar
  43. 43.
    Gawedzki, K., Kupiainen, A.: Massless lattice φ44 theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys.99, 197–252 (1985)Google Scholar
  44. 44.
    Gawedzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. Lectures given at 1984 Les Houches Summer School on: Critical Phenomena, Random Systems, Gauge Theories. Harvard preprint HUTMP 85/B 177Google Scholar
  45. 45.
    Gell-Mann, M., Low, F.: Quantum electrodynamics at small distances. Phys. Rev.95, 1300–1312 (1954)Google Scholar
  46. 46.
    Glimm, J., Jaffe, A.: Positivity of the φ34 Hamiltonian. Fortschr. Phy.21, 327–376 (1973)Google Scholar
  47. 47.
    Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure in theP(φ)2 quantum field model. Ann. Math.100, 585–632 (1974)Google Scholar
  48. 48.
    Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupledP(φ)2 model and other applications of high temperature expansions. Part I: Physics of quantum field models. Part II: The cluster expansion. In: Constructive quantum field theory, pp. 132–242. Velo, G., Wightman, A. (eds.). Lecture Notes in Physics, Vol. 25. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  49. 49.
    Glimm, J., Jaffe, A., Spencer, T.: A convergent expansion about mean field theory. I. The expansion. II. Convergence of the expansion. Ann. Phys.101, 610–630 (I), 631–669 (II) (1976)Google Scholar
  50. 50.
    Glimm, J., Jaffe, A.: Quantum physics: a functional point of view. New York, Heidelberg, Berlin: Springer 1981, a new edition in preparationGoogle Scholar
  51. 51.
    Gruber, C., Kunz, H.: General properties of polymer systems. Commun. Math. Phys.22, 133–161 (1971)Google Scholar
  52. 52.
    t'Hooft, G.: Renormalization of massless Yang-Mills fields. Nucl. Phys. B33, 173–199 (1971)Google Scholar
  53. 53.
    t'Hooft, G.: Renormalizable Lagrangians for massive Yang-Mills fields. Nucl. Phys. B35, 167–188 (1971)Google Scholar
  54. 54.
    Honerkamp, J.: The question of invariant renormalizability of the massless Yang-Mills theory in a manifest covariant approach. Nucl. Phys. B48, 269–287 (1972)Google Scholar
  55. 55.
    Imbrie, J.: Renormalization group methods in gauge field theories. Lectures given at the XLVIII session of 1984 Les Houches Summer School on: Critical phenomena, random systems, gauge theories. Harvard preprint HUTMP 85/B176Google Scholar
  56. 56.
    Kadanoff, L.: Notes in Migdal's recursion formulas. Ann. Phys.100, 359–394 (1976)Google Scholar
  57. 57.
    Kadanoff, L.: The application of renormalization group techniques to quarks and strings. Rev. Mod. Phys.49, 267–296 (1977)Google Scholar
  58. 58.
    King, C.: TheU(1) Higgs model. I. The continuum limit. II. The infinite volume limit. Commun. Math. Phys.103, 323–349 (1986)Google Scholar
  59. 59.
    Kunz, H.: Analyticity and clustering properties of unbounded spin systems. Commun. Math. Phys.59, 53–69 (1978)Google Scholar
  60. 60.
    Kunz, H., Souillard, B.: ManuscriptGoogle Scholar
  61. 61.
    Magnen, J., Sénéor, R.: The infinite volume limit of the φ34 model. Ann. Inst. Henri Poincaré24, 95–159 (1976)Google Scholar
  62. 62.
    Magnen, J., Sénéor, R.: Phase space cell expansion and Borel summability for the Euclidean φ34 theory. Commun. Math. Phys.56, 237–276 (1977)Google Scholar
  63. 63.
    Magnen, J., Sénéor, R.: The (∇φ)4 model. CPTh preprint, Ecole PolytechniqueGoogle Scholar
  64. 64.
    Osterwalder, K., Seiler, E.: Gauge field theories on a lattice. Ann. Phys.110, 440–471 (1978)Google Scholar
  65. 65.
    Polchinski, J.: Renormalization and effective Lagrangians. Nulc. Phys. B231, 269–295 (1984)Google Scholar
  66. 66.
    Ruelle, D.: Statistical mechanics. New York: Benjamin 1969Google Scholar
  67. 67.
    Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. Lecture Notes in Physics, Vol. 159. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  68. 68.
    Shigemitsu, J., Kogut, J.: A study of Λ parameters and crossover phenomena inSU(N) × SU(N) sigma models in two dimensions. Nulc. Phys. B190 [FS3], 365–411 (1981)Google Scholar
  69. 69.
    Symanzik, K.: Small distance behaviour in field theory and power counting. Commun. Math. Phys.18, 227–246 (1970)Google Scholar
  70. 70.
    Symanzik, K.: Small-distance-behaviour analysis and Wilson expansions. Commun. Math. Phys.23, 49–86 (1971)Google Scholar
  71. 71.
    Varadarajan, V.S.: Lie groups, Lie algebras and their representations. New York: Prentice-Hall 1974Google Scholar
  72. 72.
    De Witt, B.: Quantum theory of gravity. II. The manifestly covariant theories. III. Applications of the covariant theory. Phys. Rev.162, 1195–1239 (I), 1239–1256 (II) (1967)Google Scholar
  73. 73.
    Wilson, K.G.: Confinement of quarks. Phys. Rev. D10, 2445–2459 (1974)Google Scholar
  74. 74.
    Wilson, K.G.: Quantum chromodynamics on a lattice. In: Quantum field theory and statistical mechanics, pp. 143–172, 1976 Cargése Lectures, Lévy, M., Mitter, P. (eds). New York: Plenum Press 1977Google Scholar
  75. 75.
    Wilson, K.G.: Monte Carlo calculations of the lattice gauge theory. In: Recent developments in gauge theories, pp. 363–402, 1979 Cargèse Lectures. t'Hooft, G., Itzykson, C., Jaffe, A., Lehmann, M., Mitter, P., Singer, L., Stora, R. (eds.). New York: Plenum Press 1980Google Scholar
  76. 76*.
    Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: A renormalizable field theory: the massive Gross-Neveu model in two dimensions. Commun. Math. Phys.103, 67–103 (1986)Google Scholar
  77. 77*.
    Gawedzki, K., Kupiainen, A.: Gross-Neveu model through convergent perturbation expansions. Commun. Math. Phys.102, 1–30 (1985)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Tadeusz Bałaban
    • 1
  1. 1.Department of Physics, Lyman LaboratoryHarvard UniversityCambridgeUSA

Personalised recommendations