Renormalization group approach to lattice gauge field theories
I. Generation of effective actions in a small field approximation and a coupling constant renormalization in four dimensions
Article
- 173 Downloads
- 34 Citations
Abstract
We study four-dimensional pure gauge field theories by the renormalization group approach. The analysis is restricted to small field approximation. In this region we construct a sequence of localized effective actions by cluster expansions in one step renormalization transformations. We construct also β-functions and we define a coupling constant renormalization by a recursive system of renormalization group equations.
Keywords
Neural Network Renormalization Group Quantum Computing Effective Action Group Equation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Abers, E., Lee, B.W.: Gauge theories. Phys. Rep.9, 1 (1973)Google Scholar
- 2.Baaquie, B.: Gauge fixing and mass renormalization in the lattice gauge theory. Phys. Rev. D16, 2612–2627 (1977)Google Scholar
- 3.Bałaban, T., Gawedzki, K.: A low temperature expansion for the pseudoscalar Yukawa model of the quantum fields in two space-time dimensions. Ann. Inst. H. Poincaré36, 271–400 (1982)Google Scholar
- 4.Bałaban, T.: Ultraviolet stability for a model of interacting scalar and vector fields. Aarhus Universitet, Matematisk Institut, preprint series 1981/1982, No. 19. An extended version in Harvard preprints HUTMP 82/B 116 and B 117Google Scholar
- 5.Bałaban, T.: (Higgs)2, 3 quantum fields in a finite volume. I. A lower bound. Commun. Math. Phys.85, 603–636 (1982)Google Scholar
- 6.Bałaban, T.: (Higgs)2, 3 quantum fields in a finite volume. II. An upper bound. Commun. Math. Phys.86, 555–594 (1982)Google Scholar
- 7.Bałaban, T.: (Higgs)2, 3 quantum fields in a finite volume. III. Renormalization. Commun. Math. Phys.89, 411–445 (1983)Google Scholar
- 8.Bałaban, T.: Regularity and decay of lattice Green's functions. Commun. Math. Phys.89, 571–597 (1983)Google Scholar
- 9.Bałaban, T.: Renormalization group methods in non-abelian gauge theories. Harvard preprint HUTMP 84/B 134, or Recent results in constructing gauge fields. Physica124A, 79–90 (1984)Google Scholar
- 10.Bałaban, T.: Propagators and renormalization transformations for lattice gauge theories. I. Commun. Math. Phys.95, 17–40 (1984)Google Scholar
- 11.Bałaban, T.: Propagators and renormalization transformations for lattice gauge theories. II. Commun. Math. Phys.96, 223–250 (1984)Google Scholar
- 12.Bałaban, T.: Averaging operations for lattice gauge theories. Commun. Math. Phys.98, 17–51 (1985)Google Scholar
- 13.Bałaban, T.: Propagators for lattice gauge theories in a background field. Commun. Math. Phys.99, 389–434 (1985)Google Scholar
- 14.Bałaban, T.: Spaces of regular gauge field configurations on a lattice and gauge fixing conditions. Commun. Math. Phys.99, 75–102 (1985)Google Scholar
- 15.Bałaban, T.: The variational problem and background fields in renormalization group method for lattice gauge theories. Commun. Math. Phys.102, 277–309 (1985)Google Scholar
- 16.Bałaban, T.: Ultraviolet stability of three-dimensional lattice pure gauge field theories. Commun. Math. Phys.102, 255–275 (1985)Google Scholar
- 17.Bałaban, T., Imbrie, J., Jaffe, A.: Exact renormalization group for gauge theories In: Progress in gauge theories, pp. 79–104, 1983 Cargèse Lectures. Lehmann, G., t'Hooft, G., Jaffe, A., Mitter, P., Singer, I., Stova, R. (eds.). New York: Plenum Press 1984Google Scholar
- 18.Bałaban, T., Imbrie, J., Jaffe, A.: Renormalization of the Higgs model: minimizers, propagators and the stability of mean field theory. Commun. Math. Phys.97, 299–329 (1985)Google Scholar
- 19.Benfatto, G., Cassandro, M., Gallavotti, G., Nicolò, F., Olivieri, E., Presutti, E., Scaciatelli, E.: Some probabilistic techniques in field theory. Commun. Math. Phys.59, 143–166 (1978)Google Scholar
- 20.Benfatto, G., Cassandro, M., Gallavotti, G., Nicolò, F., Olivieri, E., Presutti, E., Scaciatelli, E.: Ultraviolet stability in Euclidean scalar field theories. Commun. Math. Phys.71, 95–130 (1980)Google Scholar
- 21.Benfatto, G., Gallavotti, G., Nicolò, F.: Elliptic equations and Gaussian processes. J. Funct. Anal.36, 343–400 (1980)Google Scholar
- 22.Brydges, D., Fröhlich, J. Seiler, E.: On the construction of quantized gauge fields. I. General results. Ann. Phys.121, 227–284 (1979)Google Scholar
- 23.Brydges, D., Fröhlich, J., Seiler, E.: Construction of quantized gauge fields. II. Convergence of the lattice approximation. Commun. Math. Phys.71, 159–205 (1980)Google Scholar
- 24.Brydges, D., Fröhlich, J., Seiler, E.: On the construction of quantized gauge fields. III. The two-dimensional abelian Higgs model without cutoffs. Commun. Math. Phys.79, 353–399 (1981)Google Scholar
- 25.Brydges, D.: A short course on cluster expansions. Lectures given at the XLIII session of 1984 Les Houches Summer School on: Critical Phenomena, Random Systems, Gauge TheoriesGoogle Scholar
- 26.Cammarota, C.: Decay of correlations for infinite range interactions in unbounded spin systems. Commun. Math. Phys.85, 517–528 (1982)Google Scholar
- 27.Dashen, R., Gross, D.: Relationship between lattice and continuum definitions of the gauge theory coupling. Phys. Rev. D23, 2340–2348 (1981)Google Scholar
- 28.Eckmann, J.-P., Magnen, J., Sénéor, R.: Decay properties and Borel summability for the Schwinger functions in P(φ)2 theories. Commun. Math. Phys.39, 251–271 (1975)Google Scholar
- 29.Faddeev, L., Popov, V.: Feynman diagrams for the Yang-Mills field. Phys. Lett.25 B, 29–30 (1967)Google Scholar
- 30.Feldman, J., Osterwalder, K.: The Wightman axioms and the mass gap for weakly coupled (φ4)3 quantum field theories. Ann. Phys.97, 80–135 (1976)Google Scholar
- 31.Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: The infrared behaviour of φ44 (in preparation)Google Scholar
- 32.Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Méthodes pour la théorie constructive des champs renormalisable, asymptotiquement libres. Proceedings of RCP 25, Strasbourg, June 1984Google Scholar
- 33.Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on completely convergent Euclidean Feynman graphs. Commun. Math. Phys.98, 273–288 (1985)Google Scholar
- 34.Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on renormalized Feynman graphs. Commun. Math. Phys.100, 23–55 (1985)Google Scholar
- 35.Federbusch, P.: A phase cell approach to Yang-Mills theory. I. Small field modes. II. Stability, modified renormalization group transformations. University of Michigan preprintsGoogle Scholar
- 36.Gallavotti, G., Martin-Löf, A., Miracle-Solé, S.: Some problems connected with the description of coexisting phases at low temperature in the Ising model. In: Statistical mechanics and mathematical problems, pp. 162–202. Lenard, A. (ed.) Lecture Notes in Physics, Vol. 20. Berlin, Heidelberg, New York: Springer 1973Google Scholar
- 37.Gallavotti, G.: Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods, preprint Dipartamento di Matematica, Il Universitá degli studi di Roma, 1984Google Scholar
- 38.Gallavotti, G., Nicolò, F.: Renormalization theory in four-dimensional scalar fields I and II. Commun. Math. Phys.100, 545–590 (1985);101, 247–282 (1985)Google Scholar
- 39.Gawedzki, K., Kupiainen, A.: Renormalization group study of a critical lattice model. I. Convergence to the line of fixed points. Commun. Math. Phys.82, 407–433 (1981)Google Scholar
- 40.Gawedzki, K., Kupiainen, A.: Renormalization group for a critical lattice model. Commun. Math. Phys.88, 77–94 (1983)Google Scholar
- 41.Gawedzki, K., Kupiainen, A.: Rigorous renormalization group and asymptotic freedom. In: Scaling and self-similarity in physics, pp. 227–262, Fröhlich, J. (ed.). Boston: Birkhäuser 1983Google Scholar
- 42.Gawedzki, K., Kupiainen, A.: Block spin renormalization group for dipole gas and (∇φ)4. Ann. Phys.147, 198–243 (1983)Google Scholar
- 43.Gawedzki, K., Kupiainen, A.: Massless lattice φ44 theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys.99, 197–252 (1985)Google Scholar
- 44.Gawedzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. Lectures given at 1984 Les Houches Summer School on: Critical Phenomena, Random Systems, Gauge Theories. Harvard preprint HUTMP 85/B 177Google Scholar
- 45.Gell-Mann, M., Low, F.: Quantum electrodynamics at small distances. Phys. Rev.95, 1300–1312 (1954)Google Scholar
- 46.Glimm, J., Jaffe, A.: Positivity of the φ34 Hamiltonian. Fortschr. Phy.21, 327–376 (1973)Google Scholar
- 47.Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure in theP(φ)2 quantum field model. Ann. Math.100, 585–632 (1974)Google Scholar
- 48.Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupledP(φ)2 model and other applications of high temperature expansions. Part I: Physics of quantum field models. Part II: The cluster expansion. In: Constructive quantum field theory, pp. 132–242. Velo, G., Wightman, A. (eds.). Lecture Notes in Physics, Vol. 25. Berlin, Heidelberg, New York: Springer 1973Google Scholar
- 49.Glimm, J., Jaffe, A., Spencer, T.: A convergent expansion about mean field theory. I. The expansion. II. Convergence of the expansion. Ann. Phys.101, 610–630 (I), 631–669 (II) (1976)Google Scholar
- 50.Glimm, J., Jaffe, A.: Quantum physics: a functional point of view. New York, Heidelberg, Berlin: Springer 1981, a new edition in preparationGoogle Scholar
- 51.Gruber, C., Kunz, H.: General properties of polymer systems. Commun. Math. Phys.22, 133–161 (1971)Google Scholar
- 52.t'Hooft, G.: Renormalization of massless Yang-Mills fields. Nucl. Phys. B33, 173–199 (1971)Google Scholar
- 53.t'Hooft, G.: Renormalizable Lagrangians for massive Yang-Mills fields. Nucl. Phys. B35, 167–188 (1971)Google Scholar
- 54.Honerkamp, J.: The question of invariant renormalizability of the massless Yang-Mills theory in a manifest covariant approach. Nucl. Phys. B48, 269–287 (1972)Google Scholar
- 55.Imbrie, J.: Renormalization group methods in gauge field theories. Lectures given at the XLVIII session of 1984 Les Houches Summer School on: Critical phenomena, random systems, gauge theories. Harvard preprint HUTMP 85/B176Google Scholar
- 56.Kadanoff, L.: Notes in Migdal's recursion formulas. Ann. Phys.100, 359–394 (1976)Google Scholar
- 57.Kadanoff, L.: The application of renormalization group techniques to quarks and strings. Rev. Mod. Phys.49, 267–296 (1977)Google Scholar
- 58.King, C.: TheU(1) Higgs model. I. The continuum limit. II. The infinite volume limit. Commun. Math. Phys.103, 323–349 (1986)Google Scholar
- 59.Kunz, H.: Analyticity and clustering properties of unbounded spin systems. Commun. Math. Phys.59, 53–69 (1978)Google Scholar
- 60.Kunz, H., Souillard, B.: ManuscriptGoogle Scholar
- 61.Magnen, J., Sénéor, R.: The infinite volume limit of the φ34 model. Ann. Inst. Henri Poincaré24, 95–159 (1976)Google Scholar
- 62.Magnen, J., Sénéor, R.: Phase space cell expansion and Borel summability for the Euclidean φ34 theory. Commun. Math. Phys.56, 237–276 (1977)Google Scholar
- 63.Magnen, J., Sénéor, R.: The (∇φ)4 model. CPTh preprint, Ecole PolytechniqueGoogle Scholar
- 64.Osterwalder, K., Seiler, E.: Gauge field theories on a lattice. Ann. Phys.110, 440–471 (1978)Google Scholar
- 65.Polchinski, J.: Renormalization and effective Lagrangians. Nulc. Phys. B231, 269–295 (1984)Google Scholar
- 66.Ruelle, D.: Statistical mechanics. New York: Benjamin 1969Google Scholar
- 67.Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. Lecture Notes in Physics, Vol. 159. Berlin, Heidelberg, New York: Springer 1982Google Scholar
- 68.Shigemitsu, J., Kogut, J.: A study of Λ parameters and crossover phenomena inSU(N) × SU(N) sigma models in two dimensions. Nulc. Phys. B190 [FS3], 365–411 (1981)Google Scholar
- 69.Symanzik, K.: Small distance behaviour in field theory and power counting. Commun. Math. Phys.18, 227–246 (1970)Google Scholar
- 70.Symanzik, K.: Small-distance-behaviour analysis and Wilson expansions. Commun. Math. Phys.23, 49–86 (1971)Google Scholar
- 71.Varadarajan, V.S.: Lie groups, Lie algebras and their representations. New York: Prentice-Hall 1974Google Scholar
- 72.De Witt, B.: Quantum theory of gravity. II. The manifestly covariant theories. III. Applications of the covariant theory. Phys. Rev.162, 1195–1239 (I), 1239–1256 (II) (1967)Google Scholar
- 73.Wilson, K.G.: Confinement of quarks. Phys. Rev. D10, 2445–2459 (1974)Google Scholar
- 74.Wilson, K.G.: Quantum chromodynamics on a lattice. In: Quantum field theory and statistical mechanics, pp. 143–172, 1976 Cargése Lectures, Lévy, M., Mitter, P. (eds). New York: Plenum Press 1977Google Scholar
- 75.Wilson, K.G.: Monte Carlo calculations of the lattice gauge theory. In: Recent developments in gauge theories, pp. 363–402, 1979 Cargèse Lectures. t'Hooft, G., Itzykson, C., Jaffe, A., Lehmann, M., Mitter, P., Singer, L., Stora, R. (eds.). New York: Plenum Press 1980Google Scholar
- 76*.Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: A renormalizable field theory: the massive Gross-Neveu model in two dimensions. Commun. Math. Phys.103, 67–103 (1986)Google Scholar
- 77*.Gawedzki, K., Kupiainen, A.: Gross-Neveu model through convergent perturbation expansions. Commun. Math. Phys.102, 1–30 (1985)Google Scholar
Copyright information
© Springer-Verlag 1987